首页 热点资讯 义务教育 高等教育 出国留学 考研考公
您的当前位置:首页正文

人教版初中七年级数学上册《整式》教案

2020-04-16 来源:华佗小知识


整式

第一课时

教学目标

1.能用代数式表示实际问题中的数量关系.

2.理解单项式、单项式的次数,系数等概念,会指出单项式的次数和系数.

3.经历列式表示实际问题中的数量关系,发展符号感,通过观察代数式的特点,发现、归纳单项式的概念,培养学生观察、分析、归纳的能力.

4.通过列单项式表示实际问题中的数量关系,体会整式比具体数字表达的式子更具有一般性,这给实际问题的解决带来很大方便.

重、难点

1.重点:单项式的有关概念.

2.难点:负系数的确定以及准确确定一个单项式的次数.

教学过程

一、引入新课

教师操作课件,展示章前图案以及字幕,学生观看并思考下列问题:

1.青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:

(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

(2)在西宁到拉萨路段,列车通过非冻土地段所需要时间是通过冻土地段所需要时间的2.1倍,如果通过冻土地段所需要t小时,能用含t•的式子表示这段铁路的全长吗?

(3)在格里木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要u小时,则这段铁路的全长可以怎样表示?•冻土地段与非冻土地段相差多少千米?

分析:(1)根据速度、时间和路程之间的关系:路程=速度×时间.•列车在冻土地段2小时行驶的路程是100×2=200(千米),3小时行驶的路程为100×3=300(千米),•t小时行驶的路程为100×t=100t(千米).

(2)列车通过非冻土地段所需时间为2.1t小时,行驶的路程为120×2.1t(千米);列车通过冻土地段的路程为100t,因此这段铁路的全长为120×2.1t+100t(千米).

(3)在格里木到拉萨路段,列车通过冻土地段要u小时,•那么通过非冻土地段要(u-0.5)小时,冻土地段的路程为100u千米,非冻土地段的路程为120(u-0.5)千米,这段铁路的全长为[100u+120(u-0.5)]千米,冻土地段与非冻土地段相差为[100u-120

(u-0.5)]千米.

思路点拨:上述问题(1)可由学生自己完成,问题(2)、(3)先由学生思考、•交流的基础上教师引导学生分析怎样列式.

上述的3个问题中的数量关系我们分别用含有字母的式子表示,•通过本章学习,我们还可以将上述问题(2)、(3)进行加减运算,化简.

二、新授12999.com

2.下面,我们再来看几个用含字母的式子表示数量关系的问题.

用含有字母的式子填空,看看列出的式子有什么特点.

(1)边长为a的正方体的表面积为______,体积为_______.

(2)铅笔的单价是x元,圆珠笔的单价是铅笔的单价的2.5•倍圆珠笔的单价是_______元.

(3)一辆汽车的速度是v千米/时,它t小时行驶的路程为_______千米.

(4)数n的相反数是_______.

教师课堂巡视,关注中下程度的学生,及时引导,学生探究交流.

上面各问题的代数式分别是:6a2,a3,2.5x,vt,-n.

观察上面各式中运算有什么共同特点?

上面各式中,数字与字母之间,字母与字母之间都是乘法运算,•它们都是数字与字母的积,例如:6a2表示6×a2,a3表示1×a3,2.5x表示2.5×x,vt表示1×v×t,-n•表示-1×n.

像上面这样,只含有数与字母的积的式子叫做单项式.单独的一个数或一个字母也是

11单项式.如:-2,a,3,都是单项式,而a,1+x都不是单项.

单项式中的数字因数叫做这个单项式的系数,例如:6a2的系数是6,a3的系数是1,

1ab-n的系数是-1,-5的系数是-5.

单项式表示数字与字母相乘时,通常把数字写成前面,•当一个单项式的系数是1或-1时通常省略不写.

一个单项式中,所有字母的指数的和叫做这个单项式的次数.例如,2.5x•中字母x的指数是1,2.5x是一次单项式;vt中字母v与t的指数和是2,vt是二次单项式,-ab2c中字母a、b、c的指数和是4,-ab2c是4次单项式.

例1.用单项式填空,并指出它们的系数和次数.

(1)每包书有12册,n包书有_______册.

(2)底边长为a,高为h的三角形的面积是______.

(3)一个长方体的长和宽都是a,高是h,它的体积是_______.

(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在售价为_____元.

(5)一个长方形的长为0.9,宽是a,这个长方形的面积是_________.

教师操作投影仪,展示例1,学生思考、交流.师生互动.

强调:单项式的次数是单项式中所有字母的指数和,字母的指数不写的,表示这个字母的指数是1,不是“没有”.

用字母表示数后,同一个式子在不同的问题中可以表示不同的含义.例如,在问题(4)、(5)中,所填的结果都是0.9a,一个是表示电视机的售价,一个是表示长方形的面积,你还能赋予0. 9a一个含义吗?

让学生交流各自想法,加深对字母表示数的理解.

三、巩固练习

1.下列各式是不是单项式?为什么?

(1)x-2y; (2)-

x;54;mab5

(3)(4); (5)-1.

2.判断下列各说法是否正确,错误的改正过来.

(1)单项式-xy2的系数是0,次数是2.

(2)单项式27a2的系数是2,次数是9.

3.请你写出系数为-,含有x、y,次数为4的所有单项式.

4.课本第56页练习1、2题.

四、课堂小结

师生互动,共同学习小结本节课内容.

1.什么叫单项式?举例说明.

x2.单独的一个数或一个字母是单项式吗?a是单项式吗?为什么?

3.什么叫单项式的系数?什么叫单项式的次数?举例说明.

五、作业布置

1.课本第59页至第60页,习题2.1第1、2、8题.

第二课时

教学目标

1.使学生理解多项式、整式的概念,会准确确定一个多项式的项数和次数.

2.通过实例列整式,培养学生分析问题、解决问题的能力.

3.培养学生积极思考的学习态度,合作交流意识,了解整式的实际背景,进一步感受字母表示数的意义.

教学重、难点

1.重点:多项式以及有关概念.

2.难点:准确确定多项式的次数和项.

教学过程

一、课堂引入

一、复习提问 1.什么叫单项式?举例说明.

3ab2c

2.怎样确定一个单项式的系数和次数?-7的系数、次数分别是多少?

3.列式表示下列问题:

(1)一个数比数x的2倍小3,则这个数为________.

(2)买一个篮球需要x(元),买一个排球需要y(元),买一个足球需要z(元),买3个篮球,5个排球,2个足球共需________元.

(3)如图1,三角尺的面积为________.

(4)如图2是一所住宅的建筑平面图,这所住宅的建筑面积是________平方米.

(1) (2)

二、新授

请同学们阅读课本第57页有关内容,并回答下列问题.

1.几个单项式的和叫做_________;

2.在多项式中,每个单项式叫做_________;

3.在多项式中,不含字母的项叫做_________;

4.在多项式中,_____________________,叫做这个多项式的次数.

(2)多项式的次数与单项式的次数概念不同,但又有联系,•首先求出此多项式各项(单项式)的次数,次数最高的就是这个多项式的次数.

1(3)一个多项式的最高次项可以不唯一,次高项也可以不唯一,•如,•多项式3x2y-21xy2+x2-xy-5中,最高次项为3x2y和-2xy2,二次项也有2项,x2和-xy,•这个多项式为

二次五项式.

单项式和多项式统称为整式,例如:100t,6a3,vt,-n,2x-3,3x+5y+2z等都是整式.

例1.用多项式填空,并指出它们的项和次数.

(1)温度由t℃下降5℃后是_______℃.

11(2)甲数x的3与乙数y的2的差可以表示为_________.

(3)如课本图2.1-3,圆环的面积为________.

(4)如课本图2.1-4,钢管的体积是________.

例2.一条河流的水流速度为2.5千米/时,如果已知船在静水中的速度,那么船在这条河流中顺水行驶和逆水行驶的速度分别怎样表示?如果甲、•乙两条船在静水中的速度分别是20千米/时和35千米/时,•则它们在这条河流中的顺水行驶和逆水行驶的速度各是多少?

顺水行驶时船的速度=船在静水中的速度+水流速度

逆水行驶时船的速度=船在静水中的速度-水流速度

这里水流速度为2.5千米/时,如果,我们设船在静水中的速度为v千米/时,•那么船在顺水行驶时的速度表示为(v+2.5)千米/时船在逆水行驶时的速度为(v-2.5)千米/时.

当v=20时,则v+2.5=20+2.5=22.5,v-2.4=20-2.5=17.5;当v=35时,则v+2.5=35+2.5=37.5,v-2.5=35-2.5=32.5.因此,甲船顺水行驶的速度是22.5千米/时,逆水行驶的速度为17.5千米/时;乙船顺水行驶的速度是37.5千米/•时,•逆水行驶的速度为32.5千米/时.

三、巩固练习

1.课本第59页练习,课本第61页第10题.

四、课堂小结

1.什么叫做多项式?多项式是整式吗?整式是多项式吗?

2.什么叫多项式的基?什么叫做常数项?什么叫做多项式的次数?

五、作业布置

1.课本第60页,习题2.1第2、3、4、5、6、7题.

因篇幅问题不能全部显示,请点此查看更多更全内容