线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数是理工类、经管类数学课程的重要内容。在考研中的比重一般占到22%左右。 线性代数的发展史
由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量空间的过渡,矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点.1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中.线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。
“代数”这一个词在我国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善兰才将它翻译成为“代数学”,一直沿用至今。
线性代数起源于对二维和三维直角坐标系的研究。 在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。
现代线性代数已经扩展到研究任意或无限维空间。一个维数为 n 的向量空间叫做 n 维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。尽管许多人不容易想象 n 维空间中的向量,这样的向量(即 n 元组)用来表示数据非常有效。由于作为 n 元组,向量是 n 个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。比如,在经济学中可以使用 8 维向量来表示 8 个国家的国民生产总值(GNP)。当所有国家的顺序排定之后,比如 (中国, 美国, 英国, 法国, 德国, 西班牙, 印度, 澳大利亚),可以使用向量 (v1, v2, v3, v4, v5, v6, v7, v8) 显示这些国家某一年各自的 GNP。这里,每个国家的 GNP 都在各自的位置上。
作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。一些显著的例子有: 不可逆线性映射或矩阵的群,向量空间的线性映射的环。 线性代数也在数学分析中扮演重要角色,特别在 向量分析中描述高阶导数,研究张量积和可交换映射等领域。 向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。如果一个
线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。
我们可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。比如微分学研究很多函数线性近似的问题。 在实践中与非线性问题的差异是很重要的。
线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。
线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出 物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然y/x在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。
线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。 行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,意思是 “ 解行列式问题的方法 ” ,书里对行
列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家, 微积分学奠基人之一 莱布 尼 兹 ( Leibnitz , 1693 年) 。 1750 年 克莱姆( Cramer ) 在他的《线性代数分析导言》中 发表了求解线性系统方程的重要基本公式(既人们熟悉的 Cramer 克莱姆法则)。 1764 年Be把确定行列式每一项的符号的手续系统化了。对给定了含 n 个未知量的 n 个齐次线性方程 , Be证明了系数行列式等于零是这方程组有非零解的条件
Vandermonde是第一个对行列式理论进行系统的阐述 ( 即把行列 ' 式理论与线性方程组求解相分离 ) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。 Laplace 在 1772 年的论文《对积分和世界体系的探讨》中 , 证明了 Vandermonde 的一些规则 , 并推广了他的展开行列式的方法 , 用 r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。 德国数学家雅可比( Jacobi )也于 1841 年总结并提出了行列式的系统理论。另一个研究行列式的是法国最伟大的数学家 柯西 (Cauchy) ,他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了 laplace 的展开定理。相对而言,最早利用矩阵概念的是 拉格朗日( Lagrange ) 在 1700 年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为 0 ,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。
高斯( Gauss ) 大约在 1800 年提出了高斯消元法并用它解决了天体计算
和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯 - 约当消去法则最初是出现在由 Wilhelm Jordan 撰写的测地学手册中。许多人把著名的数学家 Camille Jordan 误认为是“高斯 - 约当”消去法中的约当。
线性方程组的解法,早在中国古代的数学著作《九章算术 方程》章中已作了比较完整的论述。其中所述方法实质上相当于现代的对方程组的增广矩阵施行初等行变换从而消去未知量的方法,即高斯消元法。在西方,线性方程组的研究是在 17 世纪后期由莱布尼茨开创的。他曾研究含两个未知量的三个线性方程组组成的方程组。麦克劳林在 18 世纪上半叶研究了具有二、三、四个未知量的线性方程组,得到了现在称为克莱姆法则的结果。克莱姆不久也发表了这个法则。 18世纪下半叶,法国数学家贝祖对线性方程组理论进行了一系列研究,证明了 元齐次线性方程组有非零解的条件是系数行列式等于零。
19 世纪,英国数学家史密斯 (H.Smith) 和道奇森 (C-L.Dodgson) 继续研究线性方程组理论,前者引进了方程组的增广矩阵和非增广矩阵的概念,后者证明了 个未知数 个方程的方程组相容的充要条件是系数矩阵和增广矩阵的秩相同。这正是现代方程组理论中的重要结果之一。
大量的科学技术问题,最终往往归结为解线性方程组。因此在线性方程组的数值解法得到发展的同时,线性方程组解的结构等理论性工作也取得了令人
满意的进展。现在,线性方程组的数值解法在计算数学中占有重要地位。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。 1848 年英格兰的 J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。 1855 年矩阵代数得到了 Arthur Cayley 的工作培育。 Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在 1858 年在他的矩阵理论文集中提出的。利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。 数学家 Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论。
矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。
英国数学家凯莱 (A.Cayley,1821-1895) 一般被公认为是矩阵论的创立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。凯莱同研究线性变换下的不变量相结合,首先引进矩阵以简化记号。 1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了关于矩阵的理论。文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念,指出了矩阵加法的可交换性与可结合性。另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩阵的一些基本结果。凯莱出生于一个古老而有才能的英国家庭,剑桥大学三一学院大学毕业后留校讲授数学,三年后他转从律师职业,工作卓有成效,并利用业余时间研究数学,发表了大量的数学论文。
1855 年,埃米特 (C.Hermite,1822-1901) 证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来 ,克莱伯施 (A.Clebsch,1831-1872) 、布克海姆 (A.Buchheim) 等证明了对称矩阵的特征根性质。泰伯 (H.Taber) 引入矩阵的迹的概念并给出了一些有关的结论。
在矩阵论的发展史上,弗罗伯纽斯 (G.Frobenius,1849-1917) 的贡献是不可磨灭的。他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。 1854 年,约当研究了矩阵化为标准型的问题。 1892 年,梅茨勒 (H.Metzler) 引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。傅立叶、西尔和庞加莱的著作中还讨论了无限阶矩阵问题,这主要是适用方程发展的需要而开始的。
矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论。而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。矩阵及其理论现已广泛地应用于现代科技的各个领域。
数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既 v x w 不等于 w x v )的向量代数是由 Hermann Grassmann 在他的《线性扩张论》( Die lineale
Ausdehnungslehre ) 一 书中提出的。 (1844) 。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为 1 的矩阵,或简单矩阵。在 19 世纪末美国数学物理学家 Willard Gibbs 发表了关于《向量分析基础》 ( Elements of Vector Analysis ) 的著名论述。其后物理学家 P. A. M. Dirac 提出了行向量和列向量的乘积为标量。我们习惯的列矩阵和向量都是在 20 世纪由物理学家给出的。
矩阵的发展是与线性变换密切相连的。到 19 世纪它还仅占线性变换理论形成中有限的空间。现代向量空间的定义是由 Peano 于 1888 年提出的。二次世界大战后随着现代数字计算机的发展,矩阵又有了新的含义,特别是在矩阵的数值分析等方面。 由于计算机的飞速发展和广泛应用,许多实际问题可以通过离散化的数值计算得到定量的解决。于是作为处理离散问题的线性代数,成为从事科学研究和工程设计的科技人员必备的数学基础。 线性代数的作用
线性代数起源于对二维和三维直角坐标系的研究。 在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。
这就是实数向量空间的第一个例子。
现代线性代数已经扩展到研究任意或无限维空间。一个维数为 n 的向量空间叫做 n 维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。尽管许多人不容易想象 n 维空间中的向量,这样的向量(即 n 元组)用来表示数据非常有效。由于作为 n 元组,向量是 n 个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。比如,在经济学中可以使用 8 维向量来表示 8 个国家的国民生产总值(GNP)。当所有国家的顺序排定之后,比如 (中国, 美国, 英国, 法国, 德国, 西班牙, 印度, 澳大利亚),可以使用向量 (v1, v2, v3, v4, v5, v6, v7, v8) 显示这些国家某一年各自的 GNP。这里,每个国家的 GNP 都在各自的位置上。 作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。一些显著的例子有:不可逆线性映射或矩阵的群,向量空间的线性映射的环。 线性代数也在数学分析中扮演重要角色,特别在向量分析中描述高阶导数,研究张量积和可交换映射等领域。
向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。
我们可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。比如微分学研究很多函数线性近似的问题。 在实践中与非线性问题的差异是很重要的。 线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。
量子化学(量子力学)是建立在线性Hilbert空间的理论基础上. 没有线性代数的基础,不可能掌握量子化学。而量子化学(和分子力学)的计算在今天的化学和新药的研发中不可缺。
线性代数在数学中的地位
线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。
主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现(见于我国古代数学名著《九章算术》)。
①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位;
②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分;。
③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的;
④ 随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。
线性代数广泛应用于数学的各个分支以及物理、化学和科学技术中。如:线性代数在“人口模型”、“马尔可夫链”、“投入产出数学模型”、“图的邻接矩阵”等方面有着广泛的应用。其中行列式已广泛应用于线性方程组和矩阵理论中,这一点是很清楚的。下面只举例说明矩阵和线性方程组的一些应用。线性方程组和二次型中的应用。大家知道,最重要的线性方程组基本定理(Kronecher-CApelli):一个线性方程组有解等于其系数矩阵和增广矩阵有相同的秩。完全体现在矩阵及其秩上。可以说矩阵及其秩的理论贯穿于线性方程组讨论的始终。矩阵函数在微分方程组中有重要应用;矩阵理论在试验设计中有重要应用,其中特别要用到一些特殊的矩阵,如Hadamard矩阵和正交方阵。线性方程组在气象预
报中的应用。为了做天气和气象预报,有时往往根据诸多因素最后归结为解一个线性方程组。当然,这种线性方程组在求解时不能手算,而要在电子计算机上进行。线性方程组在国民经济中的应用。为了预测经济形势,利用投入产出经济数学模型,也往往归结为求解一个线性方程组。线性代数是代数的一个分支,它以研究向量空间与线性映射为对象;由于费马和笛卡儿的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量空间的过渡 矩阵论始于凯莱,在十九世纪下半叶,因若当的工作而达到了它的顶点.1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中.线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整
理了十九世纪所研究过的情况。
由于它的简便,所以就代数在数学和物理的各种不同分支的应用来说,线性代数具有特殊的地位.此外它特别适用于电子计算机的计算,所以它在数值分析与运
筹学中占有重要地位。
线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一
门学科。
主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在
两千年前出现(见于我国古代数学名著《九章算术》)。
①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种
代数分支中占居首要地位;
②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现
实等技术无不以线性代数为其理论和算法基础的一部分;。
③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增
益科学智能是非常有用的;
④ 随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性 代数正是解决这些问题的有力工
具。
线性代数有三个基本计算单元:向量(组),矩阵,行列式,研究它们的性质和相关定理,能够求解线性方程组,实现行列式与矩阵计算和线性变换,构建向量空间和欧式空间。线性代数的两个基本方法是构造(分解)和代数法,基本思想是化简(降解)和同构变换。 线性代数的基本介绍
线性(linear),指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数;非线性non-linear则指不按比例、不成直线的关系,一阶导数不为常数。
线性代数起源于对二维和三维直角坐标系的研究。 在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。 现代线性代数已经扩展到研究任意或无限维空间。一个维数为 n 的向量空间叫做 n 维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维
空间。尽管许多人不容易想象 n 维空间中的向量,这样的向量(即 n 元组)用来表示数据非常有效。由于作为 n 元组,向量是 n 个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。比如,在经济学中可以使用 8 维向量来表示 8 个国家的国民生产总值(GNP)。当所有国家的顺序排定之后,比如 (中国, 美国, 英国, 法国, 德国, 西班牙, 印度, 澳大利亚),可以使用向量 (v1, v2, v3, v4, v5, v6, v7, v8) 显示这些国家某一年各自的 GNP。这里,每个国家的 GNP 都在各自的位置上。
作为证明定理而使用的纯抽象概念,向量空间(线性空间)属于抽象代数的一部分,而且已经非常好地融入了这个领域。一些显著的例子有: 不可逆线性映射或矩阵的群,向量空间的线性映射的环。 线性代数也在数学分析中扮演重要角色,特别在 向量分析中描述高阶导数,研究张量积和可交换映射等领域。 向量空间是在域上定义的,比如实数域或复数域。线性算子将线性空间的元素映射到另一个线性空间(也可以是同一个线性空间),保持向量空间上加法和标量乘法的一致性。所有这种变换组成的集合本身也是一个向量空间。如果一个线性空间的基是确定的,所有线性变换都可以表示为一个数表,称为矩阵。对矩阵性质和矩阵算法的深入研究(包括行列式和特征向量)也被认为是线性代数的一部分。
我们可以简单地说数学中的线性问题——-那些表现出线性的问题——是最容易被解决的。比如微分学研究很多函数线性近似的问题。 在实践中与非线性问题的差异是很重要的。
线性代数方法是指使用线性观点看待问题,并用线性代数的语言描述它、解决它(必要时可使用矩阵运算)的方法。这是数学与工程学中最主要的应用之一。 重要定理
·每一个线性空间都有一个基。
·对一个 n 行 n 列的非零矩阵 A,如果存在一个矩阵 B 使 AB = BA =E(E是单位矩阵),则 A 为非奇异矩阵。
·一个矩阵非奇异当且仅当它的行列式不为零。
·一个矩阵非奇异当且仅当它代表的线性变换是个自同构。 ·一个矩阵半正定当且仅当它的每个特征值大于或等于零。 ·一个矩阵正定当且仅当它的每个特征值都大于零。 ·解线性方程组的克式定理。
·判断线性方程组有无非零实根的增广矩阵和系数矩阵的关系。
一般化和相关主题
线性代数是一个成功的理论,其方法已经被应用于数学的其他分支。 ·模论就是将线性代数中的标量的域用环替代进行研究。
·多线性代数将映射的“多变量”问题线性化为每个不同变量的问题,从而产生了张量的概念。
·在算子的光谱理论中,通过使用数学分析,可以控制无限维矩阵。
所有这些领域都有非常大的技术难点。
课程内容
一、课程的性质与任务
线性代数课程是高等学校理工科各专业学生的一门必修的重要基础理论课,它广泛应用于科学技术的各个领域。尤其是计算机日益发展和普及的今天,使线性代数成为工科学生所必备的基础理论知识和重要的数学工具。线性代数是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。通过本课程的学习,要使学生获得: 1、行列式 2、矩阵
3、向量组的相关性、矩阵的秩 4、线性方程组 5、相似矩阵与二次型
等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力和自学能力,还要特别注意培养学生具有比较熟练的运算能力和综合运用所学知识去分析和解决问题的能力。 二、课程的教学内容、基本要求及学时分配 (一)教学内容 1、行列式
(1) n 阶行列式的定义 (2)行列式的性质
(3)行列式的计算,按行(列)展开 (4)解线性方程组的克莱姆法则 2、矩阵
(1)矩阵的概念、单位矩阵、对角矩阵、对称矩阵 (2)矩阵的线性运算、乘法运算、转置运算及其规律 (3)逆矩阵概念及其性质,用伴随矩阵求逆矩阵 (4)分块矩阵的运算 3、向量
(1)n 维向量的概念
(2)向量组的线性相关、线性无关定义及其有关定理,线性相关性的判别 (3)向量组的最大无关组、向量组的秩 (4)矩阵的秩的概念
(5)矩阵的初等变换,用初等变换求矩阵的秩和逆矩阵 (6)n 维向量空间及子空间、基底、维数、向量的坐标 4、线性方程组
(1)齐次线性方程组有非零解的充要条件及非齐次线性方程组有解的充要条件
(2)线性方程组的基础解系、通解及解的结构
(3)非齐次线性方程组有解的条件及其判定,方程组的解法 (4)用初等行变换求线性方程组的通解 5、相似矩阵与二次型
(1)矩阵的特征值与特征向量及其求法
(2)相似矩阵及其性质
(3)矩阵对角化的充要条件及其方法 (4)实对称矩阵的相似对角矩阵 (5)二次型及其矩阵表示
(6)线性无关的向量组正交规范化的方法 (7)正交变换与正交矩阵的概念及性质 (8)用正交变换化二次型为标准形
(9)用配方法化二次型为平方和,二次型的规范形 (10)惯性定理、二次型的秩、二次型的正定性及其判别 (二)基本要求
1、理解 n 阶行列式的定义,会用定义计算简单的行列式 2、熟练掌握行列式的基本计算方法和性质 3、熟练掌握克莱姆法则 4、理解矩阵的定义
5、熟练掌握矩阵的运算方法和求逆矩阵的方法 6、理解向量相关性的概念,会用定义判定向量的相关性
7、掌握求矩阵秩的方法,理解矩阵秩与向量组的相关性之间的关系 8、理解向量空间的概念,会求向量的坐标
9、熟练掌握用初等变换求矩阵秩、逆矩阵,解线性方程组 10、熟练掌握线性方程组的求解方法,知道线性方程组的简单应用 11、熟练掌握矩阵特征值、特征向量的求法 12、掌握相似矩阵的概念,矩阵对角化的概念
13、熟练掌握用正交变换化二次型为标准型的方法 14、理解二次型的惯性定理,会用配方法求二次型的平方和 15、掌握二次型正定性概念及应用 线性代数的学习切入点:
线性方程组。
换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科。
线性方程组的特点:方程是未知数的一次齐次式,方程组的数目s和未知数的个数n可以相同,也可以不同。
关于线性方程组的解,有三个问题值得讨论: (1)、方程组是否有解,即解的存在性问题; (2)、方程组如何求解,有多少个解;
(3)、方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。
高斯消元法,最基础和最直接的求解线性方程组的方法,其中涉及到三种对方程的同解变换:
(1)、把某个方程的k倍加到另外一个方程上去; (2)、交换某两个方程的位置;
(3)、用某个常数k乘以某个方程。我们把这三种变换统称为线性方程组的初等变换。
任意的线性方程组都可以通过初等变换化为阶梯形方程组。
由具体例子可看出,化为阶梯形方程组后,就可以依次解出每个未知数的值,从而求得方程组的解。
对方程组的解起决定性作用的是未知数的系数及其相对位置,所以可以把方程组的所有系数及常数项按原来的位置提取出来,形成一张表,通过研究这张表,就可以判断解的情况。我们把这样一张由若干个数按某种方式构成的表称为矩阵。
可以用矩阵的形式来表示一个线性方程组,这至少在书写和表达上都更加简洁。
系数矩阵和增广矩阵。
高斯消元法中对线性方程组的初等变换,就对应的是矩阵的初等行变换。阶梯形方程组,对应的是阶梯形矩阵。换言之,任意的线性方程组,都可以通过对其增广矩阵做初等行变换化为阶梯形矩阵,求得解。
阶梯形矩阵的特点:左下方的元素全为零,每一行的第一个不为零的元素称为该行的主元。
对不同的线性方程组的具体求解结果进行归纳总结(有唯一解、无解、有无穷多解),再经过严格证明,可得到关于线性方程组解的判别定理:首先是通过初等变换将方程组化为阶梯形,若得到的阶梯形方程组中出现0=d这一项,则方程组无解,若未出现0=d一项,则方程组有解;在方程组有解的情况下,若阶梯形的非零行数目r等于未知量数目n,方程组有唯一解,若r 是之前需要经过更多的初等变换。在求解过程中,选择阶梯形还是最简形,取决于个人习惯。 常数项全为零的线性方程称为齐次方程组,齐次方程组必有零解。 齐次方程组的方程组个数若小于未知量个数,则方程组一定有非零解。 利用高斯消元法和解的判别定理,以及能够回答前述的基本问题 (1)解的存在性问题和 (2)如何求解的问题,这是以线性方程组为出发点建立起来的最基本理论。 对于n个方程n个未知数的特殊情形,我们发现可以利用系数的某种组合来表示其解,这种按特定规则表示的系数组合称为一个线性方程组(或矩阵)的行列式。行列式的特点:有n!项,每项的符号由角标排列的逆序数决定,是一个数。 通过对行列式进行研究,得到了行列式具有的一些性质(如交换某两行其值反号、有两行对应成比例其值为零、可按行展开等等),这些性质都有助于我们更方便的计算行列式。 用系数行列式可以判断n个方程的n元线性方程组的解的情况,这就是克莱姆法则。 总而言之,可把行列式看作是为了研究方程数目与未知量数目相等的特殊情形时引出的一部分内容。 在利用高斯消元法求解线性方程组的过程中,涉及到一种重要的运算,即把某一行的倍数加到另一行上,也就是说,为了研究从线性方程组的系数和常数项 判断它有没有解,有多少解的问题,需要定义这样的运算,这提示我们可以把问题转为直接研究这种对n元有序数组的数量乘法和加法运算。 数域上的n元有序数组称为n维向量。设向量a=(a1,a2,...,an),称ai是a的第i个分量。 n元有序数组写成一行,称为行向量,同时它也可以写为一列,称为列向量。要注意的是,行向量和列向量没有本质区别,只是元素的写法不同。 矩阵与向量通过行向量组和列向量组相联系。 对给定的向量组,可以定义它的一个线性组合。线性表出定义的是一个向量和另外一组向量之间的相互关系。 利用矩阵的列向量组,我们可以把一个线性方程组有没有解的问题转化为一个向量能否由另外一组向量线性表出的问题。同时要注意这个结论的双向作用。 从简单例子(如几何空间中的三个向量)可以看到,如果一个向量a1能由另外两个向量a2、a3线性表出,则这三个向量共面,反之则不共面。为了研究向量个数更多时的类似情况,我们把上述两种对向量组的描述进行推广,便可得到线性相关和线性无关的定义。 通过一些简单例子体会线性相关和线性无关(零向量一定线性无关、单个非零向量线性无关、单位向量组线性无关等等)。 从多个角度(线性组合角度、线性表出角度、齐次线性方程组角度)体会线性相关和线性无关的本质。 部分组线性相关,整个向量组线性相关。向量组线性无关,延伸组线性无关。 回到线性方程组的解的问题,即一个向量b在什么情况下能由另一个向量组a1,a2,...,an线性表出?如果这个向量组本身是线性无关的,可通过分析立即得到 答案:b, a1, a2, ..., an线性相关。如果这个向量组本身是线性相关的,则需进一步探讨。 任意一个向量组,都可以通过依次减少这个向量组中向量的个数找到它的一个部分组,这个部分组的特点是:本身线性无关,从向量组的其余向量中任取一个进去,得到的新的向量组都线性相关,我们把这种部分组称作一个向量组的极大线性无关组。 如果一个向量组A中的每个向量都能被另一个向量组B线性表出,则称A能被B线性表出。如果A和B能互相线性表出,称A和B等价。 一个向量组可能又不止一个极大线性无关组,但可以确定的是,向量组和它的极大线性无关组等价,同时由等价的传递性可知,任意两个极大线性无关组等价。 注意到一个重要事实:一个线性无关的向量组不能被个数比它更少的向量组线性表出。这是不难理解的,例如不共面的三个向量(对应线性无关)的确不可能由平面内的两个向量组成的向量组线性表出。 一个向量组的任意两个极大线性无关组所含的向量个数相等,我们将这个数目r称为向量组的秩。 向量线性无关的充分必要条件是它的秩等于它所含向量的数目。等价的向量组有相同的秩。 有了秩的概念以后,我们可以把线性相关的向量组用它的极大线性无关组来替换掉,从而得到线性方程组的有解的充分必要条件:若系数矩阵的列向量组的秩和增广矩阵的列向量组的秩相等,则有解,若不等,则无解。 向量组的秩是一个自然数,由这个自然数就可以判断向量组是线性相关还是线性无关,由此可见,秩是一个非常深刻而重要的概念,故有必要进一步研究向量组的秩的计算方法。 为了求向量组的秩,我们来考虑矩阵。矩阵的列向量组的秩称为矩阵的列秩,行向量组的秩称为行秩。 对阶梯形矩阵进行考察,发现阶梯形矩阵的行秩等于列秩,并且都等于阶梯形的非零行的数目,并且主元所在的列构成列向量组的一个极大线性无关组。 矩阵的初等行变换不会改变矩阵的行秩,也不会改变矩阵的列秩。 任取一个矩阵A,通过初等行变换将其化成阶梯形J,则有:A的行秩=J的行秩=J的列秩=A的列秩,即对任意一个矩阵来说,其行秩和列秩相等,我们统称为矩阵的秩。 通过初等行变换化矩阵为阶梯形,即是一种求矩阵列向量组的极大线性无关组的方法。 考虑到A的行秩和A的转置的列秩的等同性,则初等列变换也不会改变矩阵的秩。总而言之,初等变换不会改变矩阵的秩。因此如果只需要求矩阵A的秩,而不需要求A的列向量组的极大无关组时,可以对A既作初等行变换,又作初等列变换,这会给计算带来方便。 矩阵的秩,同时又可定义为不为零的子式的最高阶数。 满秩矩阵的行列式不等于零。非满秩矩阵的行列式必为零。 既然矩阵的秩和矩阵的列秩相同,则可以把线性方程组有解的充分必要条件更加简单的表达如下:系数矩阵的秩等于增广矩阵的秩。另外,有唯一解和有无穷多 解的条件也可从秩的角度给出回答:系数矩阵的秩r等于未知量数目n,有唯一解,r 通过对具体实例进行分析,可以看到求基础解系的方法还是在于用初等行变换化阶梯形。 非齐次线性方程组的解的结构,是由对应的齐次通解加上一个特解。 在之前研究线性方程组的解的过程当中,注意到矩阵及其秩有着重要的地位和应用,故还有必要对矩阵及其运算进行专门探讨。 矩阵的加法和数乘,与向量的运算类同。 矩阵的另外一个重要应用:线性变换(最典型例子是旋转变换)。即可以把一个矩阵看作是一种线性变换在数学上的表述。 矩阵的乘法,反映的是线性变换的叠加。如矩阵A对应的是旋转一个角度a,矩阵B对应的是旋转一个角度b,则矩阵AB对应的是旋转一个角度a+b。 矩阵乘法的特点:若C=AB,则C的第i行、第j列的元素是A的第i行与B的第j列的元素对应乘积之和;A的列数要和B的行数相同;C的行数是A的行数,列数是B的列数。需要主义的是矩阵乘法不满足交换律,满足结合律。 利用矩阵乘积的写法,线性方程组可更简单的表示为:Ax=b。 对于C=AB,还可作如下分析:将左边的矩阵A写成列向量组的形式,即意味着C的列向量组能由A的列向量组表示,从而推知C的列秩小于等于A的列秩;将右边的矩阵B写成行向量组的形式,即意味着C的行向量组能由B的 行向量组表示,从而推知C的行秩小于等于B的行秩,再考虑到矩阵的行秩等于列秩等于矩阵的秩,最终可得到结论,C的秩小于等于A的秩,也小于等于B的秩,即矩阵乘积的秩总不超过任一个因子的秩。 关于矩阵乘积的另外一个重要结论:矩阵乘积的行列式等于各因子的行列式的乘积。 一些特殊的矩阵:单位阵、对角阵、初等矩阵。尤其要注意,初等矩阵是单位阵经过一次初等变换得到的矩阵。 每一个初等矩阵对应一个初等变换,因为左乘的形式为PA(P为初等矩阵),将A写成行向量组的形式,PA意味着对A做了一次初等行变换;同理,AP意味着对A做了一次初等列变换,故左乘对应行变换,右乘对应列变换。 若AB=E,则称A为可逆矩阵,B是A的逆阵,同样,这时的B也是可逆矩阵,注意可逆矩阵一定是方阵。 第一种求逆阵的方法:伴随阵。这种方法的理论依据是行列式的按行(列)展开。 矩阵可逆,行列式不为零,行(列)向量组线性无关,满秩,要注意这些结论之间的充分必要性。 单位阵和初等矩阵都是可逆的。 若矩阵可逆,则一定可以通过初等变换化为单位阵,这是不难理解的,因为初等矩阵满秩,故最后化成的阶梯型(最简形)中非零行数目等于行数,主元数目等于列数,这即是单位阵。进一步,既然可逆矩阵可以通过初等变换化为单位阵,而初等变换对应的是初等矩阵,即意味着:可逆矩阵可以通过左(右)乘一 系列初等矩阵化为单位阵,换言之可逆矩阵可看作是一系列初等矩阵的乘积,因为单位阵在乘积中可略去。 可逆矩阵作为因子不会改变被乘(无论左乘右乘)的矩阵的秩。 由于可逆矩阵可以看作是一系列初等矩阵的乘积,可以想象,同样的这一系列初等矩阵作用在单位阵上,结果是将这个单位阵变为原来矩阵的逆阵,由此引出求逆阵的第二种方法:初等变换。需要注意的是这个过程中不能混用行列变换,且同样是左乘对应行变换,右乘对应列变换。 矩阵分块,即可把矩阵中的某些行和列的元素看作一个整体,对这些被看作是整体的对象构成的新的矩阵。 从解方程到群论 求根问题是方程理论的一个中心课题。 16 世纪,数学家们解决了三、四次方程的求根公式,对于更高次方程的求根公式是否存在,成为当时的数学家们探讨的又一个问题。这个问题花费了不少数学家们大量的时间和精力。经历了屡次失败,但总是摆脱不了困境。 到了 18 世纪下半叶,拉格朗日认真总结分析了前人失败的经验,深入研究了高次方程的根与置换之间的关系,提出了预解式概念,并预见到预解式和各根在排列置换下的形式不变性有关。但他最终没能解决高次方程问题。拉格朗日的弟子鲁菲尼 (Ruffini,1765-1862) 也做了许多努力,但都以失败告终。高次方程的根式解的讨论,在挪威杰出数学家阿贝尔那里取得了很大进展。阿贝尔 (N.K.Abel,1802-1829) 只活了 27 岁,他一生贫病交加,但却留下了许多创造性工作。 1824 年,阿贝尔证明了次数大于四次的一般代数方程不可能有根式解。但问题仍没有彻底解决,因为有些特殊方程可以用根式求解。因此,高于四次的 代数方程何时没有根式解,是需要进一步解决的问题。这一问题由法国数学家伽罗瓦全面透彻地给予解决。 伽罗瓦 (E.Galois,1811-1832) 仔细研究了拉格朗日和阿贝尔的著作,建立了方程的根的“容许”置换,提出了置换群的概念,得到了代数方程用根式解的充分必要条件是置换群的自同构群可解。从这种意义上,我们说伽罗瓦是群论的创立者。伽罗瓦出身于巴黎附近一个富裕的家庭,幼时受到良好的家庭教育,只可惜,这位天才的数学家英年早逝, 1832 年 5 月,由于政治和爱情的纠葛,在一次决斗中被打死,年仅 21 岁。 置换群的概念和结论是最终产生抽象群的第一个主要来源。抽象群产生的第二个主要来源则是戴德金(R.Dedekind,1831-1916) 和 (L.Kronecker,1823-1891) 的有限群及有限交换群的抽象定义以及凯莱 (A.Kayley,1821-1895) 关于有限抽象群的研究工作。另外,克莱因 (F.Clein,1849-1925) 和庞加莱 (J-H.Poincare,1854-1912) 给出了无限变换群和其他类型的无限群, 19 世纪 70 年代,李 (M.S.Lie,1842-1899) 开始研究连续变换群,并建立了连续群的一般理论,这些工作构成抽象群论的第三个主要来源。 1882-1883 年,迪克 (W.vondyck,1856-1934) 的论文把上述三个主要来源的工作纳入抽象群的概念之中,建立了(抽象)群的定义。到 19 世纪 80 年代,数学家们终于成功地概括出抽象群论的公理体系。 20 世纪 80 年代,群的概念已经普遍地被认为是数学及其许多应用中最基本的概念之一。它不但渗透到诸如几何学、代数拓扑学、函数论、泛函分析及其他许多数学分支中而起着重要的作用,还形成了一些新学科如拓扑群、李群、代 数群等,它们还具有与群结构相联系的其他结构,如拓扑、解析学以及编码学、自动机理论等方面,都有重要作用。线性代数有什么用? 线性代数的作用 这是每一个圈养在象牙塔里,在灌输式教学模式下的“被学习”的学生刚刚开始思考时的第一个问题。我稍微仔细的整理了一下学习线代的理由,竟然也罗列了不少,不知道能不能说服你: 1如果你想顺利地拿到学位,线性代数的学分对你有帮助; 2如果你想继续深造,考研,必须学好线代。因为它是必考的数学科目,也是研究生科目《矩阵论》、《泛函分析》的基础。例如,泛函分析的起点就是无穷多个未知量的无穷多线性方程组理论。 3如果你想提高自己的科研能力,不被现代科技发展潮流所抛弃,也必须学好,因为瑞典的L.戈丁说过,没有掌握线代的人简直就是文盲。他在自己的数学名著《数学概观》中说:要是没有线性代数,任何数学和初等教程都讲不下去。按照现行的国际标准,线性代数是通过公理化来表述的。它是第二代数学模型,其根源来自于欧几里得几何、解析几何以及线性方程组理论。„,如果不熟悉线性代数的概念,像线性性质、向量、线性空间、矩阵等等,要去学习自然科学,现在看来就和文盲差不多,甚至可能学习社会科学也是如此。 4 如果毕业后想找个好工作,也必须学好线代: 想搞数学,当个数学家 想搞电子工程,好,电路分析、线性信号系统分析、数字滤波器分析设计等需要线代,因为线代就是研究线性网络的主要工具;进行IC集成电路设计时,对付数百万个集体管的仿真软件就需要依赖线性方程组的方法;想搞光电及射频 工程,好,电磁场、光波导分析都是向量场的分析,比如光调制器分析研制需要张量矩阵,手机信号处理等等也离不开矩阵运算。 想搞软件工程,好,3D游戏的数学基础就是以图形的矩阵运算为基础;当然,如果你只想玩3D游戏可以不必掌握线代;想搞图像处理,大量的图像数据处理更离不开矩阵这个强大的工具,《阿凡达》中大量的后期电脑制作没有线代的数学工具简直难以想象。 想搞经济研究。好,知道列昂惕夫(Wassily Leontief)吗?哈佛大学教授,1949年用计算机计算出了由美国统计局的25万条经济数据所组成的42个未知数的42个方程的方程组,他打开了研究经济数学模型的新时代的大门。这些模型通常都是线性的,也就是说,它们是用线性方程组来描述的,被称为列昂惕夫“投入-产出”模型。列昂惕夫因此获得了1973年的诺贝尔经济学奖。 相当领导,好,要会运筹学,运筹学的一个重要议题是线性规划。许多重要的管理决策是在线性规划模型的基础上做出的。线性规划的知识就是线代的知识啊。比如,航空运输业就使用线性规划来调度航班,监视飞行及机场的维护运作等;又如,你作为一个大商场的老板,线性规划可以帮助你合理的安排各种商品的进货,以达到最大利润。 对于其他工程领域,没有用不上线代的地方。如搞建筑工程,那么奥运场馆鸟巢的受力分析需要线代的工具;石油勘探,勘探设备获得的大量数据所满足的几千个方程组需要你的线代知识来解决;飞行器设计,就要研究飞机表面的气流的过程包含反复求解大型的线性方程组,在这个求解的过程中,有两个矩阵运算的技巧:对稀疏矩阵进行分块处理和进行LU分解; 作餐饮业,对于构造一份有营养的减肥食谱也需要解线性方程组;知道有限元方法吗?这个工程分析中十 分有效的有限元方法,其基础就是求解线性方程组。知道马尔科夫链吗?这个“链子”神通广大,在许多学科如生物学、商业、化学、工程学及物理学等领域中被用来做数学模型,实际上马尔科夫链是由一个随机变量矩阵所决定的一个概率向量序列,看看,矩阵、向量又出现了。 另外,矩阵的特征值和特征向量可以用在研究物理、化学领域的微分方程、连续的或离散的动力系统中,甚至数学生态学家用以在预测原始森林遭到何种程度的砍伐会造成猫头鹰的种群灭亡;大名鼎鼎的最小二乘算法广泛应用在各个工程领域里被用来把实验中得到的大量测量数据来拟合到一个理想的直线或曲线上,最小二乘拟合算法实质就是超定线性方程组的求解;二次型常常出现在线性代数在工程(标准设计及优化)和信号处理(输出的噪声功率)的应用中,他们也常常出现在物理学(例如势能和动能)、微分几何(例如曲面的法曲率)、经济学(例如效用函数)和统计学(例如置信椭圆体)中,某些这类应用实例的数学背景很容易转化为对对称矩阵的研究。 总结一下,线性代数的应用领域几乎可以涵盖所有的工程技术领域。。 线性代数的意义 线性代数是代数的一个重要学科,那么什么是代数呢?代数英文是Algebra,源于阿拉伯语。其本意是“结合在一起”。也就是说代数的功能是把许多看似不相关的事物“结合在一起”,也就是进行抽象。抽象的目的不是为了显示某些人智商高,而是为了解决问题的方便!为了提高效率。把一些看似不相关的问题化归为一类问题。线性代数中的一个重要概念是线性空间(对所谓的“加法”和“数乘”满足8条公理的集合),而其元素被称为向量。也就是说,只要满足那么几条公理,我们就可以对一个集合进行线性化处理。可以把一个不太明白的结构用已经熟知 的线性代数理论来处理,如果我们可以知道所研究的对象的维数(比如说是n),我们就可以把它等同为R^n,量决定了质!多么深刻而美妙的结论!上面我说的是代数的一个抽象特性。这个对我们的影响是思想性的!如果我们能够把他用在生活中,那么我们的生活将是高效率的。 向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。 在研究线性方程组,因式化简,方程求根,高维几何,多元积分方面都有广泛的应用。 线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 ①线性代数在数学、力学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位; ②在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分;。 ③该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的; ④ 随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算 机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 下面简要谈一下线性代数的具体应用。 线性代数研究最多的就是矩阵了。矩阵又是什么呢?矩阵就是一个数表,而这个数表可以进行变换,以形成新的数表。也就是说如果你抽象出某种变化的规律,你就可以用代数的理论对你研究的数表进行变换,并得出你想要的一些结论。 另外,进一步的学科有运筹学。运筹学的一个重要议题是线性规划,而线性规划要用到大量的线性代数的处理。如果掌握的线性代数及线性规划,那么你就可以讲实际生活中的大量问题抽象为线性规划问题。以得到最优解:比如你是一家小商店的老板,你可以合理的安排各种商品的进货,以达到最大利润。如果你是一个大家庭中的一员,你又可以用规划的办法来使你们的家庭预算达到最小。这些都是实际的应用啊! 总之,线性代数历经如此长的时间而生命力旺盛,可见她的应用之广!多读读书吧,数学是美的,更是有用的! 因篇幅问题不能全部显示,请点此查看更多更全内容