首页 热点资讯 义务教育 高等教育 出国留学 考研考公
您的当前位置:首页正文

月度总结精选: 高二数学知识点梳理回顾1篇

2024-08-29 来源:华佗小知识

高二数学知识点。

当学习或者工作结束时,我们通常会使用到总结报告。写总结也是为了让自己变得优秀、更有能力!每次写下的总结,会在我们心中形成声音:每多做一份事,就可以在这件事上学习到新知识、新技能。那么我们怎么样才能写好一篇总结报告呢?以下是小编为大家精心整理的“月度总结精选: 高二数学知识点梳理回顾1篇”,仅供参考,希望能为您提供参考!

一、直线与方程

(1)直线的倾斜角

定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α180°

(2)直线的斜率

①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。

②过两点的直线的斜率公式:

注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°;

(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;

(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程

①点斜式:直线斜率k,且过点

注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b

③两点式:()直线两点,

④截矩式:

其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)

注意:各式的适用范围特殊的方程如:

平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数);

(5)直线系方程:即具有某一共同性质的直线

(一)平行直线系

平行于已知直线(是不全为0的常数)的直线系:(C为常数)

(二)垂直直线系

垂直于已知直线(是不全为0的常数)的直线系:(C为常数)

(三)过定点的直线系

(ⅰ)斜率为k的直线系:,直线过定点;

(ⅱ)过两条直线,的交点的直线系方程为

(为参数),其中直线不在直线系中。

(6)两直线平行与垂直

当,时,;

注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(7)两条直线的交点

相交

交点坐标即方程组的一组解。

方程组无解;方程组有无数解与重合

(8)两点间距离公式:设是平面直角坐标系中的两个点,

(9)点到直线距离公式:一点到直线的距离

(10)两平行直线距离公式

在任一直线上任取一点,再转化为点到直线的距离进行求解。

扩展阅读

总结收藏: 高二数学知识点回顾季度范文精选


在我们的学习或者工作中,总少不了要写总结。总结写多了,我们就会发现其中蕴含的规律。每多写一次总结,我们的进步就越显著:有时候,为他人创造价值,也是在为自己创造价值。那么你知道怎么书写优秀的总结报告吗?小编特地为您收集整理“总结收藏: 高二数学知识点回顾季度范文精选”,仅供参考,欢迎大家阅读。

1、学会三视图的分析:

2、斜二测画法应注意的地方:

(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x轴的线段长不变,平行于y轴的线段长减半。(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度。

3、表(侧)面积与体积公式:

⑴柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

⑵锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

⑶台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

⑷球体:①表面积:S=;②体积:V=

4、位置关系的证明(主要方法):注意立体几何证明的书写

(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

(2)平面与平面平行:①线面平行面面平行。

(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

5、求角:(步骤———————Ⅰ。找或作角;Ⅱ。求角)

⑴异面直线所成角的求法:平移法:平移直线,构造三角形;

⑵直线与平面所成的角:直线与射影所成的角

[总结分享] 初中地理知识点梳理回顾(通用)


当我们的学习或者工作结束一段进程的时候,经常会需要写总结。通过总结,我们可以全面、系统地了解以往的情况。每次写下的总结,会在我们心中形成声音:每个人都有各自的价值,能力越大责任越大。那么你知道怎么书写优秀的总结报告吗?小编收集并整理了“[总结分享] 初中地理知识点梳理回顾(通用)”,欢迎大家阅读,希望对大家有所帮助。

1.地球的公转:

地球自西向东绕太阳不停地旋转,周期为365.2422天

2.太阳高度:

太阳光与地面的交角,叫做太阳高度角,简称太阳高度。

(1)一天中太阳高度正午最大,杆影最短。(由于地球自转)

(2)一年中,正午太阳高度夏季最大,杆影最短,冬季正午太阳高度最小, 杆影最长。

(3)同一时间,太阳高度从直射点向两侧减小,纬度越高太阳高度越小。

3.太阳直射点(太阳高度为900)

春分日(3月21日前后)直射赤道

一年中,太阳直射点在南北回归线之间来回移动

夏至日(6月22日前后)直射北回归线

回归线之间的地区:太阳两次直射

秋分日(9月23日前后)直射赤道

回归线上直射一次

冬至日(12月22日前后)直射南回归线

其他地区无直射

4.昼夜长短的变化:

(1)赤道全年昼夜等长

(2)北半球其他地区:夏至日白天最长,冬至日白天最短,北半球夏至日时,南半球冬至日。

(3)夏季,南极圈,北极圈内出现极昼,冬季出现极夜。(纬度越高,昼夜变化最大)

5.五带的划分:

(1)根据接受太阳辐射热量多少划分为:热带、南温带、北温带、南寒带和北寒带。

(2) 热带:在南北纬23.5°之间,,有直射阳光,终年炎热,昼夜长短变化小.

温带:在南北纬23.5°与南北纬66.5°之间,既无直射阳光,也无极昼极夜现象,四季分明。

寒带:在南北纬66.5°到90°之间,终年寒冷,有极昼极夜现象。

(3)正午太阳高度变化、四季更替、 昼夜长短的变化、五带的形成,是由于地球公转。

热门总结: 高中数学知识点总结(篇一)


在日常的学习工作中,我们偶尔会需要写总结。总结就是过去时间做的事的总检查、总评价。每次写总结,都是我们思考的绝好时机:人是可以无限创造价值的存在,我们做的每一件事都值得被认真对待。那么我们在写总结的时候要特别注意什么吗?下面是由小编为大家整理的“热门总结: 高中数学知识点总结(篇一)”,希望能对您有所帮助,请收藏。

(1)不等关系

感受在现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景。

(2)一元二次不等式

①经历从实际情境中抽象出一元二次不等式模型的过程。

②通过函数图象了解一元二次不等式与相应函数、方程的联系。

③会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。

(3)二元一次不等式组与简单线性规划问题

①从实际情境中抽象出二元一次不等式组。

②了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组(参见例2)。

③从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决(参见例3)。

(4)基本不等式

①探索并了解基本不等式的证明过程。

②会用基本不等式解决简单的(小)值问题。

最新总结: 初三数学知识点总结如何写


不管我们是学习,还是工作中,总会有写总结的时候。写总结可以推动我们的工作向前不断前进。每次写总结的时候,我们的大脑中都会形成新的知识:我们每一个人都是独一无二的存在,每个人都能创造价值。那么如何着手动笔撰写总结报告呢?以下是小编收集整理的“最新总结: 初三数学知识点总结如何写”,仅供参考,大家一起来看看吧。

单项式与多项式

仅含有一些数和字母的乘法包括乘方运算的式子叫做单项式单独的一个数或字母也是单项式。

单项式中的数字因数叫做这个单项式或字母因数的数字系数,简称系数。

当一个单项式的系数是1或—1时,“1”通常省略不写。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如果在几个单项式中,不管它们的系数是不是相同,只要他们所含的字母相同,并且相同字母的指数也分别相同,那么,这几个单项式就叫做同类单项式,简称同类项所有的常数都是同类项。

1、多项式

有有限个单项式的代数和组成的式子,叫做多项式。

多项式里每个单项式叫做多项式的项,不含字母的项,叫做常数项。

单项式可以看作是多项式的特例

把同类单项式的系数相加或相减,而单项式中的字母的乘方指数不变。

在多项式中,所含的不同未知数的个数,称做这个多项式的元数经过合并同类项后,多项式所含单项式的个数,称为这个多项式的项数所含个单项式中次项的次数,就称为这个多项式的次数。

2、多项式的值

任何一个多项式,就是一个用加、减、乘、乘方运算把已知数和未知数连接起来的式子。

3、多项式的恒等

对于两个一元多项式fx、gx来说,当未知数x同取任一个数值a时,如果它们所得的值都是相等的,即fa=ga,那么,这两个多项式就称为是恒等的记为fx==gx,或简记为fx=gx。

性质1如果fx==gx,那么,对于任一个数值a,都有fa=ga。

性质2如果fx==gx,那么,这两个多项式的个同类项系数就一定对应相等。

4、一元多项式的根

一般地,能够使多项式fx的值等于0的未知数x的值,叫做多项式fx的根。

多项式的加、减法,乘法

1、多项式的加、减法

2、多项式的乘法

单项式相乘,用它们系数作为积的系数,对于相同的字母因式,则连同它的指数作为积的一个因式。

3、多项式的乘法

多项式与多项式相乘,先用一个多项式等每一项乘以另一个多项式的各项,再把所得的积相加。

常用乘法公式

公式I平方差公式

a+ba—b=a^2—b^2

两个数的和与这两个数的差的积等于这两个数的平方差。

今日总结:最新高中数学知识点总结其二


在我们的现实生活与工作中,时常会需要写总结报告。写总结可以丰富我们的专业知识,提升专业水平。每次写总结的时候,我们的大脑中都会形成新的知识:人的力量是无求无尽的,相信自己就一定能做到。那么我们自己怎么写出一篇总结报告呢?以下是小编收集整理的“今日总结:最新高中数学知识点总结其二”,欢迎阅读,希望您能阅读并收藏。

有界性

设函数f(x)在区间X上有定义,如果存在M0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。

单调性

设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。

奇偶性

设为一个实变量实值函数,若有f(—x)=—f(x),则f(x)为奇函数。

几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变。

奇函数的例子有x、sin(x)、sinh(x)和erf(x)。

设f(x)为一实变量实值函数,若有f(x)=f(—x),则f(x)为偶函数。

几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变。

偶函数的例子有|x|、x2、cos(x)和cosh(x)。

偶函数不可能是个双射映射。

连续性

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。

优质总结:高二数学的知识点总结篇二


在平日里的学习与工作中,我们在某些情况下需要写总结报告。总结是对过去的事情的简单概括,也是提升自己的关键因素之一。每次写下总结,我们就多了一份感知与思考:人的力量是无求无尽的,相信自己就一定能做到。那么我们写一篇总结需要考虑什么呢?下面是小编为大家整理的“优质总结:高二数学的知识点总结篇二”,仅供参考,欢迎大家阅读。

一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。

简单随机抽样的特点:

(1)用简单随机抽样从含有N个个体的总体中抽取一个容量为n的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为

(2)简单随机抽样的特点是,逐个抽取,且各个个体被抽到的概率相等;

(3)简单随机抽样方法,体现了抽样的客观性与公平性,是其他更复杂抽样方法的基础.

(4)简单随机抽样是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样

简单抽样常用方法:

(1)抽签法:先将总体中的所有个体(共有N个)编号(号码可从1到N),并把号码写在形状、大小相同的号签上(号签可用小球、卡片、纸条等制作),然后将这些号签放在同一个箱子里,进行均匀搅拌,抽签时每次从中抽一个号签,连续抽取n次,就得到一个容量为n的样本适用范围:总体的个体数不多时优点:抽签法简便易行,当总体的个体数不太多时适宜采用抽签法.(2)随机数表法:随机数表抽样“三步曲”:第一步,将总体中的个体编号;第二步,选定开始的数字;第三步,获取样本号码概率:

相关高中数学知识点:系统抽样

系统抽样的概念:

当整体中个体数较多时,将整体均分为几个部分,然后按一定的规则,从每一个部分抽取1个个体而得到所需要的样本的方法叫系统抽样。

系统抽样的步骤:

(1)采用随机方式将总体中的个体编号;

(2)将整个编号进行均匀分段在确定相邻间隔k后,若不能均匀分段,即

=k不是整数时,可采用随机方法从总体中剔除一些个体,使总体中剩余的个体数N′满足是整数;

(3)在第一段中采用简单随机抽样方法确定第一个被抽得的个体编号l;

(4)依次将l加上ik,i=1,2,…,(n-1),得到其余被抽取的个体的编号,从而得到整个样本。

相关高中数学知识点:分层抽样

分层抽样:

当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比例进行抽样,这种抽样叫做分层抽样,其所分成的各个部分叫做层。

利用分层抽样抽取样本,每一层按照它在总体中所占的比例进行抽取。

不放回抽样和放回抽样:

在抽样中,如果每次抽出个体后不再将它放回总体,称这样的抽样为不放回抽样;如果每次抽出个体后再将它放回总体,称这样的抽样为放回抽样.

随机抽样、系统抽样、分层抽样都是不放回抽样

分层抽样的特点:

(1)分层抽样适用于差异明显的几部分组成的情况;

(2)在每一层进行抽样时,在采用简单随机抽样或系统抽样;

(3)分层抽样充分利用已掌握的信息,使样具有良好的代表性;

(4)分层抽样也是等概率抽样,而且在每层抽样时,可以根据具体情况采用不同的抽样方法,因此应用较为广泛。

显示全文