大家有没有考虑过可以直接用进程池去做任务呢?我们习惯性自己去处理一个任务,但是比较麻烦,如果可以制作一个进程自己去处理能实现吗?答案一定是肯定的,但是需要借助apply功能,大家知道要这个方法吗?知道怎么去使用吗?如果不了解的话,可以继续看下文了哦~
apply_async与apply区别:
l apply:添加任务后,等待进程函数执行完,
l apply_async:添加任务后,立即返回,支持回调;原型如下:
#callback为回调函数 pools.apply_async(func, args=(), kwds={}, callback=None, error_callback=None,)
直接看例子:
from multiprocessing import Pool import time import os def func(*args, **kwargs): # 定义进程函数 print('sub process id:', os.getpid()) time.sleep(1) if __name__ == "__main__": start = time.time() # 创建进程池,进程数为4 pools = Pool(4) for i in range(5): # 添加任务 pools.apply_async(func) # 关闭进程池,不在添加任务 pools.close() pools.join() print("cost time:", int(time.time()-start))
结果:
sub process id: 15536 sub process id: 2788 sub process id: 20288 sub process id: 11020 sub process id: 15536 cost time: 2
现在大家应该知道怎么去使用apply这个方法了吧,害怕大家不清楚明白,还给大家准备了一个示例,大家可以看下示例演示,也可以很容易理解的哦~