五年级下册数学复习知识点
1.简易方程:方程ax±b=c(a,b,c是常数)叫做简易方程。
2.方程:含有未知数的等式叫做方程。(注意方程是等式,又含有未知数,两者缺一不可)
方程和算术式不同。算术式是一个式子,它由运算符号和已知数组成,它表示未知数。方程是一个等式,在方程里的未知数可以参加运算,并且只有当未知数为特定的数值时 ,方程才成立 。
3.方程的解
使方程左右两边相等的未知数的值,叫做方程的解。
如果两个方程的解相同,那么这两个方程叫做同解方程。
4.方程的同解原理:
(1)方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。
(2)方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
5.解方程:解方程,求方程的解的过程叫做解方程。
6.列方程解应用题的意义:
用方程式去解答应用题求得应用题的未知量的方法。
7.列方程解答应用题的步骤
(1)弄清题意,确定未知数并用x表示;
(2)找出题中的数量之间的相等关系;
(3)列方程,解方程;
(4)检查或验算,写出答案。
8.列方程解应用题的方法
(1)综合法
先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。这是从部分到整体的一种 思维过程,其思考方向是从已知到未知。
(2)分析法
先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。这是从整体到部分的一种思维过程,其思考方向是从未知到已知。
9.列方程解应用题的范围 :小学范围内常用方程解的应用题:
(1)一般应用题;
(2)和倍、差倍问题;
(3)几何形体的周长、面积、体积计算;
(4)分数、百分数应用题;
(5)比和比例应用题。
10.因数
整数B能整除整数A,A叫作B的倍数,B就叫做A的因数或约数。在自然数的范围内例:在算式6÷2=3中,2、3就是6的因数。
11.自然数的因数(举例)
6的因数有:1和6,2和3。
10的因数有:1和10,2和5。
15的因数有:1和15,3和5。
25的因数有:1和25,5。
12.因数的分类
除法里,如果被除数除以除数,所得的商都是自然数而没有余数,就说被除数是除数的倍数,除数和商是被除数的因数。
我们将一个合数分成几个质数相乘的形式,这样的几个质数叫做这个合数的质因数。
13.倍数:对于整数m,能被n整除(n/m),那么m就是n的倍数。如15能够被3或5整除,因此15是3的倍数,也是5的倍数。
一个数的倍数有无数个,也就是说一个数的倍数的集合为无限集。注意:不能把一个数单独叫做倍数,只能说谁是谁的倍数。
14.完全数:完全数又称完美数或完备数,是一些特殊的自然数。它所有的真因子(即除了自身以外的约数)的和(即因子函数),恰好等于它本身。
15.偶数:整数中,能够被2整除的数,叫做偶数。
16.奇数:整数中,能被2整除的数是偶数,不能被2整除的数是奇数,
17.奇数偶数的性质
关于奇数和偶数,有下面的性质:
(1)奇数不会同时是偶数;两个连续整数中必是一个奇数一个偶数;
(2)奇数跟奇数和是偶数;偶数跟奇数的和是奇数;任意多个偶数的和都是偶数;
(3)两个奇(偶)数的差是偶数;一个偶数与一个奇数的差是奇数;
(4)除2外所有的正偶数均为合数;
(5)相邻偶数最大公约数为2,最小公倍数为它们乘积的一半。
(6)奇数的积是奇数;偶数的积是偶数;奇数与偶数的积是偶数;
(7) 偶数的个位上一定是0、2、4、6、8;奇数的个位上是1、3、5、7、9。
18.质数:指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。
19.合数:比1大但不是素数的数称为合数。1和0既非素数也非合数。合数是由若干个质数相乘而得到的。
质数是合数的基础,没有质数就没有合数。
20.分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫分数。表示这样的一份的数叫分数单位。
21.分数分类:分数可以分成:真分数,假分数,带分数,百分数
22.真分数:分子比分母小的分数,叫做真分数。真分数小于一。如:1/2,3/5,8/9等等。真分数一般是在正数的范围内研究的。
23.假分数:分子大于或者等于分母的分数叫假分数,假分数大于1或等于1.
假分数通常可以化为带分数或整数。如果分子和分母成倍数关系,就可化为整数,如不是倍数关系,则化为带分数。
24.分数的基本性质:分数的分子和分母同时乘以或除以一个不为0的数,分数的值不变。
25.约分:把一个分数化成和它相等,但分子、分母都比较小的分数,叫做约分
26.公因数:在两个或两个以上的自然数中,如果它们有相同的因数,那么这些因数就叫做它们的公因数。任何两个自然数都有公因数1.(除零以外)而这些公因数中最大的那个称为这些正整数的最大公因数。
27.通分:根据分数的基本性质,把几个异分母分数化成与原来分数相等的且分母相同的分数,叫做通分。
28.通分方法
(1)求出原来几个分数的分母的最小公倍数
(2)根据分数的基本性质,把原来分数化成以这个最小公倍数为分母的分数
29.公倍数:指在两个或两个以上的自然数中,如果它们有相同的倍数,这些倍数就是它们的公倍数。这些公倍数中最小的,称为这些整数的最小公倍数
30.分数加减法
(1)同分母分数相加减,分母不变,即分数单位不变,分子相加减,最后要化成最简分数。
(2)异分母分数相加减,先通分,即运用分数的基本性质将异分母分数转化为同分母分数,改变其分数单位而大小不变,再按同分母分数相加减法去计算,最后要化成最简分数。
31.统计图:复式折线统计图是用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次连接起来,以折线的上升或下降来表示统计数量增减变化。折线统计图不但可以表示出数量的多少,而且还能够清楚的表示出数量增减变化的情况。
五年级下册数学复习知识点
1、⑴两个连续的自然数只有公因数1,它们的最大公因数是1,最小公倍数是这两个数的积。如:3和4是两个连续的自然数,它们的最大公因数是1,最小公倍数是3×4=12。
⑵两个不同的质数只有公因数1,它们的最大公因数是1,最小公倍数是这两个质数的积。如:5和7是两个不同的质数,它们的最大公因数是1,最小公倍数是35。
⑶一个数是另一个数的倍数,它们的最大公因数是较小数,最小公倍数是较大数。如:32是8的倍数,它们的最大公因数是8,最小公倍数是32。
2、分数的分子和分母只有公因数1,像这样的分数叫做最简分数。
3、(1)把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。约分时是根据分数的基本性质。
(2)约分可以一次性约分(用最大公因数分别去除分子、分母)
也可以逐步约分(用公因数分别去除分子、分母)
4、(1)比分数的大小:分母相同,分子大,分数就大;分子相同,分母小,分数才大。
(2)、分数比较大小的一般方法:同分子比较;通分分比较;化成小数比较
5、(1)把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。通分时是根据分数的基本性质。
(2)通常用分子和分母的最小公倍数作公分母比较合适。
6、小数化成分数:看小数的位数,小数表示是十分之几,百分之几,千分之几……的数,所以可以直接写成分母是10、100、1000……的分数,在化简。
7、分数化成小数的方法:
(1)利用分数的基本性质将分母化成整十整百…的分数
(2)利用分数与除法的关系,用分子除以分母,除不尽时,要根据需要按“四舍五入”法保留几位小数。一般保留两位小数。
8、一个最简分数,如果分母中除了2和5以外,不含其他的质因数,就能够化成有限小数。反之则不可以。
9、同分母分数加、减法法则:分母不变,分子相加、减。结果要是最简分数。
10、异分母分数要先通分才能够相加、减。
11、分数加减混合运算的顺序和整数的相同。整数加法的交换律、结合律对于分数加法同样适用。
数学圆的面积知识点
1、圆的面积:圆所占平面的大小叫做圆的面积。用字母S表示。
2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。
3、圆面积公式的推导:
(1)、用逐渐逼近的转化思想:体现化圆为方,化曲为直;化新为旧,化未知为已知,化复杂为简单,化抽象为具体。
(2)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。
(3)、拼出的图形与圆的周长和半径的关系。
圆的半径=长方形的宽
圆的周长的一半=长方形的长
因为:长方形面积=长×宽
所以:圆的面积=圆周长的一半×圆的半径
S圆=πr×r
圆的面积公式:S圆=πr2
数学测量知识点
1、在生活中,量比较短的物品,可以用毫米(mm)、厘米(cm)、分米(dm)做单位。
量比较长的物体,常用米(m)做单位。
量比较长的路程一般用千米(km)做单位。
2、运动场的跑道,通常1圈是400米,2圈半是1000米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙、身份证的厚度大约是1毫米。
4、量比较短的物体的长度或者要求量得比较精确时,可以用毫米作单位。
5、1厘米中间的每一小格的长度是1毫米。
6、在计算长度时,只有相同的长度单位才能相加减;单位不同时,要先转化成相同的单位再计算。
7、表示物体有多重时,通常要用到质量单位。称比较轻的物品的质量,可以用“克”作单位;称一般物品的质量,常用“千克”作单位;表示大型物体的质量或载质量一般用“吨”作单位。
8、常用长度单位:米、分米、厘米、毫米、千米。
9、长度单位:米、分米、厘米、毫米,每相邻两个单位之间的进率都是10。
1米=10分米, 1分米=10厘米, 1厘米=10毫米
1米=100厘米1千米(公里)=1000米
10、质量单位:吨、千克、克,每相邻两个单位之间的进率都是1000 。
1吨=1000千克1千克=1000克
五年级下册数学复习知识点
数学面积单位间的进率
1、长度单位:米、分米、厘米--进率是10;1米=10分米=100厘米=1000毫米
2、面积单位:平方厘米、平方分米、平方米--进率是100;
1平方米=100平方分米,1平方分米=100平方厘米,1平方米=10000平方厘;
3、“公顷”(测量菜地面积、果园面积)和“平方千米”(测量城市土地面积)是用来测量土地的更大的面积单位;
4、质量单位:克(g)、千克(kg,也叫公斤)、吨(t)。1000克=1千克,1000千克=1吨。
5、计量路程或测量铁路、河流等比较长的物体时,一般用千米(km)作单位,又叫公里。(四)各图形的特点:长方形的特点:对边相等,四个角都是直角;
数学圆的周长知识点
环绕有限面积的区域边缘的长度积分,叫做周长,也就是图形一周的长度。多边形的周长的长度也相等于图形所有边的和,圆的周长=πd=2πr(d为直径,r为半径,π),扇形的周长=2R+nπR÷180?(n=圆心角角度)=2R+kR(k=弧度)。
推导圆周长最简洁的办法是用积分。在平面直角坐标下圆的方程是这可以写成参数方程:于是圆周长就是结果自然就是(注:三角函数一般的定义是依赖于圆的周长或面积的,为了避免逻辑上的循环论证,可以把三角函数按收敛的幂级数或积分来定义而不依赖于几何,此时圆周率就不是由圆定义的常数,而是由三角函数周期性得到的常数)。如果不需要更多的理论讨论,上面的做法就足够了。