初中数学八年级教案精选。
教案课件是我们老师的部分工作,因此每天老师都会按质按时去写好教案课件。制作严谨的教案是教学质量好的重要保障,你认为好的教案课件应该是怎么样的?以下是中学范文网编辑为您准备的与“初中数学八年级教案”相关的内容,以下内容仅供参考请综合考虑其他因素做出决策!
初中数学八年级教案 篇1
《实际问题与反比例函数(第三课时)》是新人教版八年级下册第十七章第二节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。体现反比例函数是解决实际问题有效的数学模型,经历“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题“的过程。
(1)通过对“杠杆原理”等实际问题与反比例函数关系的探究,使学生能够从函数的观点来解决一些实际问题;
(2)通过对实际问题中变量之间关系的分析,建立函数模型,运用已学过的反比例函数知识加以解决,体会数学建模思想和学以致用的数学理念。
分析实际问题中变量之间的关系,建立反比例函数模型解决问题,进一步运用函数的图像、性质挖掘杠杆原理中蕴涵的道理。
3、情感、态度与价值观目标:
(1)利用函数探索古希腊科学家阿基米德发现的“杠杆定律”,使学生的求知欲望得到激发,再通过自己所学知识解决了身边的问题,大大提高了学生学习数学的兴趣。
(2)训练学生能把思考的结果用语言很好地表达出来,同时要让学生很好地交流和合作。
在17、1学习了反比例函数的概念及函数的图像和性质基础上,《实际问题与反比例函数》这一节重点介绍反比例函数在现实生活中的广泛性,以及如何应用反比例函数的知识解决现实生活中的实际问题。
本节课的探究的例题和练习题都是现实生活中的常见问题,反映了数学与实际的关系,即数学理论来源于实际又发过来服务实际,这样有助于提高学生把抽象的数学概念应用于实际问题的能力。在数学课上涉及了物理学力学的实际问题,运用到古希腊科学家阿基米德发现的“杠杆定理”,其本质体现的是力与力臂两个量的发比例关系,最后落实到运用数学来解决。通过学习,让学生进一步加深对反比例函数的运用和理解,更深层次体会建立反比例模型解决实际问题的思想,巩固和提高所学知识,鼓励学生将所学知识应用到生活中去。
本节课容易了解的地方是:杠杆是我们在生活中常常遇到的物理模型,利用杠杆定理容易建立函数关系式。
而我认为本节课有两个问题学生比较难理解:(1)是注意在实际问题中函数自变量的取值范围,用数学知识去解决实际问题。在讲课时注意提醒学生关注实际问题的意义;(2)从函数的角度深层次挖掘变量的关系,在这一过程中学生逐渐建立运用运动变化的观点解释一些现象,实现从静到动的转变。授课时教师要按照学生的认知规律有层次、有步骤地引导学生分析解决问题。学生可以在我设计的问题的提示下来进行探究,学生若能发现其他的规律,教师应表扬,并让同学自己来讲解。
教法特点:
1、在研究性学习中应以问题情境和学习任务为驱动。教学过程中 ,教师不应把现成的结论和方法直接告诉学生,应以问题情境和学习任务为驱动,激发学生的探索精神和求知欲望。同时,又要营造一种宽松、和谐、积极民主的学习氛围,使每位学生都成为问题的探索者、研究中的发现者。
2、注重观察能力的培养。教学过程中应注重对学生观察的目的性、敏锐性和思辨性结合的培养 ,优化观察的对象,透过现象看本质,迅速从繁杂无序问题中捕捉最有价值的信息。此能力是发现问题和解决问题的关键。
3、合作意识和合作能力的培养。合作意识和合作能力是现代人才必备的基本素质之一。现代社会中,几乎任何一项工作都要许多人通力合作才能完成(如上述众多结论的获得) ,是否具有协作精神,能否与他人合作,已成为决定一个人能否成功的重要因素。教师要创设一切为学生合作的情境和机会,使学生学会与他人合作。
4、数学应用意识的培养。作为数学教师 ,我们的主要任务是,培养学生用数学的眼光去观察和分析实际问题,提高对数学的兴趣,增强学好数学的信心,达到培养创新精神和能力的目的。以上问题的解决过程,实际上就是要求学生作为主体去面对解决的问题,主动去探索、讨论,寻找问题解决的途径,用数学的方法和技术来处理实际模型,最终得出结论。
5、数学审美能力的培养。数学是“真”的典范 ,同时又是“美”的科学。教师应引导学生去发现美、体验美、感受美和创造美,这样能够使学生的思维得到锻炼、智力得到开发、情操得到陶冶和创新能力得到提高。它是鼓舞学生奋发向上,引导学生积极创造的重要因素。
本节的难点在于“把实际问题利用反比例函数转化为数学问题加以解决”,课前预设通过“师生共分析——分析错处——再独立解题”的三个环节,以达到学生逐步掌握转化的方法。
在探索实际问题与反比例函数时,教学活动设计了学生通过“现观察——后归纳——再比较——后小结”的循环上升的思维进程进行引导,在实际教学活动中学生通过自主探索能发现并归纳,使学生所学知识进一步内化和系统化。
总之 ,学生是具有学习的自主性、探索性、协作性和实践性。本节课是学生对科学探索与研究的初步尝试,但是它对学生今后的学习和15、1分式的意义说课稿
初中数学八年级教案 篇2
一、学生起点分析
学生已经了勾股定理,并在先前其他内容学习中已经积累了一定百度一下的逆向思维、逆向研究的经验,如:已知两直线平行,有什么样的结论?
反之,满足什么条件的两直线是平行?因而,本课时由勾股定理出发逆向思考获得逆命题,学生应该已经具备这样的意识,但具体研究中
可能要用到反证等思路,对现阶段学生而言可能还具有一定困难,需要教师适时的引导。
二、学习任务分析
本节课是北师大版数学八年级(上)第一章《勾股定理》第2节。教学任务有:探索勾股定理的逆定理
并利用该定理根据边长判断一个三角形是否是直角三角形,利用该定理解决一些简单的实际问题;通过具体的数,增加对勾股数的直观体验。为此确定教学目标:
● 知识与技能目标
1.理解勾股定理逆定理的具体内容及勾股数的概念;
2.能根据所给三角形三边的条件判断三角形是否是直角三角形。
● 过程与方法目标
1.经历一般规律的探索过程,发展学生的抽象思维能力;
2.经历从实验到验证的过程,发展学生的数学归纳能力。
● 情感与态度目标
1.体验生活中的数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣;
2.在探索过程中体验成功的喜悦,树立学习的自信心。
教学重点
理解勾股定理逆定理的具体内容。
三、教法学法
1.教学方法:实验猜想归纳论证
本节课的教学对象是初二学生,他们的参与意识较强,思维活跃,对通过实验获得数学结论已有一定的体验
但数学思维严谨的同学总是心存疑虑,利用逻辑推理的方式,让同学心服口服显得非常迫切,为了实现本节课的教学目标,我力求从以下三个方面对学生进行引导:
(1)从创设问题情景入手,通过知识再现,孕育教学过程;
(2)从学生活动出发,通过以旧引新,顺势教学过程;
(3)利用探索,研究手段,通过思维深入,领悟教学过程。
2.课前准备
教具:教材、电脑、多媒体课件。
学具:教材、笔记本、课堂练习本、文具。
四、教学过程设计
本节课设计了七个环节。第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:
登高望远;第五环节:巩固提高;第六环节:交流小结;第七环节:布置作业。
第一环节:情境引入
内容:
情境:1.直角三角形中,三边长度之间满足什么样的关系?
2.如果一个三角形中有两边的平方和等于第三边的平方,那么这个三角形是否就是直角三角形呢?
意图:
通过情境的创设引入新课,激发学生探究热情。
效果:
从勾股定理逆向思维这一情景引入,提出问题,激发了学生的求知欲,为下一环节奠定了良好的基础。
第二环节:合作探究
内容1:探究
下面有三组数,分别是一个三角形的三边长 ,①5,12,13;②7,24,25;③8,15,17;并回答这样两个问题:
1.这三组数都满足 吗?
2.分别以每组数为三边作出三角形,用量角器量一量,它们都是直角三角形吗?学生分为4人活动小组,每个小组可以任选其中的一组数。
意图:
通过学生的合作探究,得出若一个三角形的三边长 ,满足 ,则这个三角形是直角三角形这一结论;在活动中体验出数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
效果:
经过学生充分讨论后,汇总各小组实验结果发现:①5,12,13满足 ,可以构成直角三角形;②7,24,25满足 ,可以构成直角三角形;③8,15,17满足 ,可以构成直角三角形。
从上面的分组实验很容易得出如下结论:
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
内容2:说理
提问:有同学认为测量结果可能有误差,不同意这个发现。你认为这个发现正确吗?你能给出一个更有说服力的理由吗?
意图:让学生明确,仅仅基于测量结果得到的结论未必可靠,需要进一步通过说理等方式使学生确信结论的可靠性,同时明晰结论:
如果一个三角形的三边长 ,满足 ,那么这个三角形是直角三角形
满足 的三个正整数,称为勾股数。
注意事项:为了让学生确认该结论,需要进行说理,有条件的班级,还可利用几何画板动画演示,让同学有一个直观的认识。
活动3:反思总结
提问:
1.同学们还能找出哪些勾股数呢?
2.今天的结论与前面学习勾股定理有哪些异同呢?
3.到今天为止,你能用哪些方法判断一个三角形是直角三角形呢?
4.通过今天同学们合作探究,你能体验出一个数学结论的发现要经历哪些过程呢?
意图:进一步让学生认识该定理与勾股定理之间的关系
第三环节:小试牛刀
内容:
1.下列哪几组数据能作为直角三角形的三边长?请说明理由。
①9,12,15; ②15,36,39; ③12,35,36; ④12,18,22
解答:①②
2.一个三角形的三边长分别是 ,则这个三角形的面积是( )
A 250 B 150 C 200 D 不能确定
解答:B
3.如图1:在 中, 于 , ,则 是( )
A 等腰三角形 B 锐角三角形
C 直角三角形 D 钝角三角形
解答:C
4.将直角三角形的三边扩大相同的倍数后, (图1)
得到的三角形是( )
A 直角三角形 B 锐角三角形
C 钝角三角形 D 不能确定
解答:A
意图:
通过练习,加强对勾股定理及勾股定理逆定理认识及应用
效果
每题都要求学生独立完成(5分钟),并指出各题分别用了哪些知识。
第四环节:登高望远
内容:
1.一个零件的形状如图2所示,按规定这个零件中 都应是直角。工人师傅量得这个零件各边尺寸如图3所示,这个零件符合要求吗?
解答:符合要求 , 又 ,
2.一艘在海上朝正北方向航行的轮船,航行240海里时方位仪坏了,凭经验,船长指挥船左传90,继续航行70海里,则距出发地250海里,你能判断船转弯后,是否沿正西方向航行?
解答:由题意画出相应的图形
AB=240海里,BC=70海里,,AC=250海里;在△ABC中
=(250+240)(250-240)
=4900= = 即 △ABC是Rt△
答:船转弯后,是沿正西方向航行的。
意图:
利用勾股定理逆定理解决实际问题,进一步巩固该定理。
效果:
学生能用自己的语言表达清楚解决问题的过程即可;利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形( ),以便于计算。
第五环节:巩固提高
内容:
1.如图4,在正方形ABCD中,AB=4,AE=2,DF=1, 图中有几个直角三角形,你是如何判断的?与你的同伴交流。
解答:4个直角三角形,它们分别是△ABE、△DEF、△BCF、△BEF
2.如图5,哪些是直角三角形,哪些不是,说说你的理由?
图4 图5
解答:④⑤是直角三角形,①②③⑥不是直角三角形
意图:
第一题考查学生充分利用所学知识解决问题时,考虑问题要全面,不要漏解;第二题在于考查学生如何利用网格进行计算,从而解决问题。
效果:
学生在对所学知识有一定的熟悉度后,能够快速做答并能简要说明理由即可。注意防漏解及网格的应用。
第六环节:交流小结
内容:
师生相互交流总结出:
1.今天所学内容①会利用三角形三边数量关系 判断一个三角形是直角三角形;②满足 的三个正整数,称为勾股数;
2.从今天所学内容及所作练习中总结出的经验与方法:①数学是源于生活又服务于生活的;②数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律;③利用三角形三边数量关系 判断一个三角形是直角三角形时,当遇见数据较大时,要懂得将 作适当变形, 便于计算。
意图:
鼓励学生结合本节课的学习谈自己的收获和感想,体会到勾股定理及其逆定理的广泛应用及它们的悠久历史;敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识。
效果:
学生畅所欲言自己的切身感受与实际收获,总结出利用三角形三边数量关系 判断一个三角形是直角三角形从古至今在实际生活中的广泛应用。
第七环节:布置作业
课本习题1.4第1,2,4题。
五、教学反思:
1.充分尊重教材,以勾股定理的逆向思维模式引入如果一个三角形的三边长 ,满足 ,是否能得到这个三角形是直角三角形的问题;充分引用教材中出现的例题和练习。
2.注重引导学生积极参与实验活动,从中体验任何一个数学结论的发现总是要经历观察、归纳、猜想和验证的过程,同时遵循由特殊一般特殊的发展规律。
3.在利用今天所学知识解决实际问题时,引导学生善于对公式变形,便于简便计算。
4.注重对学习新知理解应用偏困难的学生的进一步关注。
5.对于勾股定理的逆定理的论证可根据学生的实际情况做适当调整,不做要求。
由于本班学生整体水平较高,因而本设计教学容量相对较大,教学中,应注意根据自己班级学生的状况进行适当的删减或调整。
附:板书设计
能得到直角三角形吗
情景引入 小试牛刀: 登高望远
初中数学八年级教案 篇3
教学目标:
(1)理解通分的意义,理解最简公分母的意义;
(2)掌握分式的通分法则,能熟练掌握通分运算。
教学重点:分式通分的理解和掌握。
教学难点:分式通分中最简公分母的确定。
教学工具:投影仪
教学方法:启发式、讨论式
教学过程:
(一)引入
(1)如何计算:
由此让学生复习分数通分的意义、通分的根据、通分的法则以及最简公分母的概念。
(2)如何计算:
(3)何计算:
引导学生思考,猜想如何求解?
(二)新课
1、类比分数的通分得到分式的通分:
把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.
注意:通分保证
(1)各分式与原分式相等;
(2)各分式分母相等。
2.通分的依据:分式的基本性质.
3.通分的关键:确定几个分式的最简公分母.
通常取各分母的所有因式的最高次幂的积作最简公分母,这样的公分母叫做最简公分母.
根据分式通分和最简公分母的定义,将分式通分:
最简公分母为:
然后根据分式的基本性质,分别对原来的各分式的分子和分母乘一个适当的整式,使各分式的分母都化为通分如下:_x
通过本例使学生对于分式的通分大致过程和思路有所了解。让学生归纳通分的思路过程。
例1 通分:_x
分析:让学生找分式的公分母,可设问“分母的系数各不相同如何解决?”,依据分数的通分找最小公倍数。
解:∵ 最简公分母是12xy2,
小结:各分母的系数都是整数时,通常取它们的系数的最小公倍数作为最简公分母的系数.
解:∵最简公分母是10a2b2c2,
由学生归纳最简公分母的思路。
分式通分中求最简公分母概括为:(1)取各分母系数的最小公倍数;(2)凡出现的字母为底的幂的因式都要取;(3)相同字母的幂的因式取指数最大的。取这些因式的积就是最简公分母。
初中数学八年级教案 篇4
《反比例函数的应用》是苏科版八年级下册第九章第三节的课题,是在前面学习了反比例函数、反比例函数的图象和性质的基础上的一节应用课。这一节的内容符合新课程理念,课程要面向生活世界和社会实践。反比例函数的知识在生产和实际生活中经常用到,掌握这些知识对学生参加实践活动,解决日常生活中的实际问题具有实用意义。通过反比例函数的应用使学生明确函数、方程、不等式是解决实际问题的三种重要的数学模型,它们之间有着密切联系,并在一定的条件下可以互相转化。在教学过程中,还渗透着建模思想、函数思想、数形结合思想,这些思想也为后面学习二次函数的应用奠定了基础。
“反比例函数的应用”是反比例函数及其图象中的一个重要的内容,它是前面几节课的综合应用。由于函数知识在日常生活中有重要的实用意义,根据教学大纲的明确规定并结合素质教育要求,通过本节课的教学达到以下目标:
使学生了解反比例函数是日常生活和生产实际中应用十分广泛的数学模型,使学生掌握生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。
①使学生能模仿“利用函数解决实际问题的基本步骤”来解决简单的实际问题;初步养成自己提出或构建数学模型的能力;提高综合运用函数、方程、不等式知识解决实际问题的能力。
②引例通过开放性的问题,作业中通过编题培养学生的发散思维能力。
①通过本节知识的学习,使学生明确,应用反比例函数的知识可以解决生活中的许多问题,从而进一步培养学生热爱数学,进而努力学好数学的情感。
②使学生树立事物是普遍联系的辩证唯物观。
③引例中让学生具有一方有难八方支援的献爱心精神。
我认为本节课的教学重点是把一类实际问题归结为反比例函数问题来解决,这是因为:
1.反比例函数是日常生活和生产实践中应用十分广泛的数学模型,它真正体现了数学知识来源于生活又应用于生活的重要意义。
2.“利用反比例函数解决实际问题的基本步骤”是通过对例题的解题过程进行归纳总结而得到的结论。它遵循了从“具体到抽象再到具体”的认知规律,蕴含了从“特殊到一般再到特殊”的推理方法。对今后学习数学有着重要的指导意义。
我认为本节课的教学难点是从实际问题中抽象出数学问题,建立数学模型,注意在实际问题中函数自变量的取值范围,用数学知识去解决实际问题。
在突破难点时,我注意:
1.使学生熟练掌握反比例函数的图象和性质,教学生学会“数形结合”的研究方法,它直观、形象、好理解。
2.密切联系实际问题,注意观察生活。
根据课程标准,当学生面对实际问题时,能主动尝试着,从数学的角度运用所学的知识和方法寻求解决问题的策略。对于例1,由于学生初次接触反比例函数的应用,我采用的是教师引导法,降低难度.其余,我都采用的教学方法是问题教学法,让一个个有阶梯的问题充满课堂教学,时时启发学生的思维,这种教学方法符合以下教育规律:
1、遵循由浅入深,由特殊到一般再到特殊,体现掌握知识与发展智力相统一的规律。
2、创设问题情境,教师不断启发引导学生思考,由易到难,化繁为简,体现教师的主导作用与学生主体作用相结合的规律。
这种教学方法实际上也教给学生一种学习方法,使得学生学会观察生活,注意生活中的实际问题,学会自己探求知识;培养学生善于观察思考的习惯,鼓励学生将所学知识应用到生活中去。学会寻找、发现,学会归纳总结,逐步掌握主动获取知识的本领。
采用多媒体教学,通过直观演示图象,更好地教会学生“数形结合”的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
“问题是数学的心脏”(P.R.Halmos语),是数学知识、能力发展的生长点和思维的动力。在课堂教学的开始,我创设了这样一个情景:
去年下半年,励才中学初一(2)班黄晶晶同学的爸爸诊断为肝癌,家中又突发一场大火,真是祸不单行,一下急需的10万元款从何而来,关键时刻,群众积极响应镇政府的号召,一方有难八方支援,结果,捐款总额比预期的还要理想。如果你是镇政府领导,你除了积极做好思想动员工作之外,能不能运用反比例函数的知识对即将发动群众献爱心进行策划呢?
为了很好的解决这一问题,我们共同来学习以下两道题目:
设计意图:由学生身边的事出发,激起学生的爱心,为积极筹划这个活动,带着对数学的求知欲,进入例题的学习。
学习例1:
小明家离学校1500m,某天小明上学时,发现时间不多了,就加快了行车速度,①小明行车平均速度(υ)与所用时间(t)有怎样的函数关系?②如果所剩时间为15分钟,那么小明的平均速度至少达到多少才能按时到校?③为了安全起见,小明的平均速度最快达到90m/min,他至少要留多长时间,才能安全到校?④画出函数的图象。
例1中,出现了一个常量,两个变量;我们看,
平均速度(υ)随所用时间(t)的变化而怎样变化?是否为反比例函数关系?若是可用反比例函数的有关知识去解决问题.
②、③两问实际上就是函数的特殊情形,一是已知自变量,求函数值;一是已知函数值,求自变量.从这两问,再引导学生探求自变量的取值范围. ④问中,指导学生画图,分析问题(多媒体展示函数图象).
设计意图:这道题是课本例1的改编,更换背景的目的是为了更贴近学生的生活,以更好地激发学生的求知欲.后面的例2也是在课本例2的基础上添加了一个背景,目的也是如此.
由于学生初次接触反比例函数的应用问题,我选择教师引导法.引导学生联系反比例函数图象及性质建立反比例函数模型,渗透函数思想,数形结合思想.在画图象前,已引导学生探究自变量的取值范围,这样就化解了教学难点.
小华同学的爸爸在某自来水公司上班,现该公司计划新建一个容积为4×104m3的长方体蓄水池,小华爸爸把这一问题带回来与小华一起探讨:
①蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?
②如果蓄水池的深度设计为5m,那么蓄水池的底面积应为多少平方米?
③由于绿化以及辅助用地的需要,经过实地测量, 蓄水池的长和宽最多只能分别设计为100m和60m,那么蓄水池的深度至少达到多少才能满足要求?
这是个几何体积问题的应用题,我通过设置以下问题,引导学生观察思考,逐步分析,最后通过建立函数这种数学模型解决问题.
问题(1):这是一个几何体积问题,问题中包含有哪些量? 哪些是常量?哪些是变量?
问题(2):在容积不变的情形下, 蓄水池的底面积S(m2)与其深度h(m)有怎样的函数关系?为什么?写出关系式.
问题(3): 函数关系式中自变量的取值范围如何确定?从而决定函数值的取值范围又是怎样?
问题(4):能否画出函数的图象? (指导学生画图,分析问题,多媒体展示函数图象.)
问题(6):题中②、③两问除了利用图象来解之外,是不是也可以利用方程解或不等式解?
设计意图:对例2采用了设计问题系列,启发学生思考,联系旧知识建立函数模型,解决了自变量的取值范围从而确定了函数值的取值范围,渗透了函数的思想,让学生初步了解函数模型的建立方法。最后渗透一题多解方法,培养学生思维的灵活性,渗透“函数——方程——不等式”思想和“数形结合”的研究方法,引导学生学会解题后的再思考,将知识系统化。
“学数学而不练,犹如入宝山而空返”(华罗庚语),为了让学生更好地学会反比例函数知识的应用,我设计了例2的后续问题,让学生练习。使课堂教学能前后连贯。
例2中的新建蓄水池工程需要运送的土石方总量为4×104m3,某运输公司承担了该项工程运送土石方的任务。
①运输公司平均每天的工程量υ(m3/天)与完成运送任务所需要的时间t(天)之间有怎样的函数关系?
②运输公司共派出20辆卡车,每辆卡车每天运土石方100 m3,则需要多少天才能完成该任务?
可以通过此类题反馈本节所学,检查学生是否掌握了“数形结合”的研究方法,及时加强对数据和信息的处理能力。
①现在大家能否利用我们刚掌握的知识来策划发动群众献爱心呢?
②如果每人平均捐款100元,那么需要发动多少人捐献。根据实际生活水平,每人平均捐款只能达到50元,那么至少要发动多少人捐献?发动人数与每人平均捐款数成怎样的函数关系?当每人平均捐款数一定时,捐款总额与发动的人数成怎样的函数关系?
设计意图:让学生回到课堂之初的问题中,解决问题,使整个课堂教学浑然一体,体验学习数学的乐趣。
教师启发学生思考回答下列问题,再由教师补充归纳本节所学知识内容。
(1) 通过本节反比例函数的应用的学习,我们掌握了生活中有一类两变量的乘积为定值的实际问题可归结为反比例函数问题来解决的思想方法。
(2) 初步学会了数学建模的方法.
(3) 树立了事物是普遍联系的辩证唯物观。
根据新课程理念,人人学有价值的数学,不同的人在数学上有不同的发展.我的作业布置分必做题和选做题两部分,其中选做题是一道自编题,我的目的是既巩固所学知识,又复习了旧知,同时还能让学生体验一下做老师的愉悦.
(5)选做题:
4月6日,姜堰溱湖湿地公园游人如织,来自世界各地的游人蜂拥而至,“小数学”利用早上上学前的时间,来到公园门口,他发现……。请你利用我们学过的知识,编两题,要求分别能利用正比例函数和反比例函数解决问题。
数学思想 引例 ×× 例1 ×× 例2 ××
及本节新知 ×× ×× ××
结束语:
教学过程是一个不断生成的过程,在教学过程中,我将根据学生实际情况,不断调整我的教学内容,以使学生在课堂上的思维永远处于一种亢奋状态。
说课对我来说是新事物,今后我将进一步说好课,并希望各位专家领导对本节课提出宝贵意见。
谢谢各位!
初中数学八年级教案 篇5
一、 说教学内容:
(一)、本课时的内容、地位及作用:
本课内容是华东师大版八年级(下)数学第十八章《函数及其图象》第四节《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数-—反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
(二) 、本课题的教学目标:
教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:
(1)、通过对实际问题的探究,理解反比例函数的意义。
(2)、体会反比例函数的不同表示法。
(1)、通过两个实际问题,培养学生勤于思考和分析归纳的能力。
(2)、在思考、归纳等过程中,发展学生的合情说理能力。
(1)、通过已有的知识经验探索的过程,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。
(2)、理论联系实际,让学生有学有所用的感性认识。
二、 说教学方法:
本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。
由于学生才第一次接触函数,对一次函数尽管已经学习了,但对函数这部分内容不是十分熟练。因此,在教这节课时,要注意和一次函数,尤其是正比例函数与反比例函数的类比。引导学生从函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。
对于所设置的两个问题为学生所熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的能力,从而培养对数学学科的.浓厚兴趣,使部分学生由不爱学变得爱学。让学生真正体会到:生活处处皆数学,生活处处有函数。
三、 说学法指导:
课堂,只有宝贵的四十五分钟,有相当一部分学生很难驾驭,身不由已,注意力不能集中。针对这种情况,故意设置两个贴近生活的实例,让学生展开想象的翅膀,主动思考,相互探讨,学生互动,师生互动。在想象与探讨的互动中,迸发出思想的火花,寻求问题的答案――反比例函数的意义。
为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。
在本课时的教学双边活动过程中,抓住初中学生的心理生理特点,尽量运用生动的语言,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。
教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到“理论来自于实践,而理论又反过来指导实践”的哲学思想。从而培养和提高学生分析问题和解决问题的能力.
师生共同回忆前一阶段所学知识,再次强调函数的重要性,同时启开新的课题——反比例函数(教师板书),(若作业中存在普遍问题,应先纠正)。
2、 创设问题情景,激发学生的学习热情,培养学生遵纪守法的意识:
教师陈述本班小王发生的一个故事(问题1),故事的经过是这样的:
昨天下午3时许,小王的爸爸骑摩托车带着小王去了离家24公里的县城,因摩托车没有注册入户,被交警将车扣留,6点钟小王父子坐了小四轮按原路返回。
(2)、两种交通工具的正常行驶速度一样吗?来去的路程一样吗?时间呢?(生答:不一样、一样、不一样)
师生共同探究,时间的变化是由速度的变化所引起,设时间为t,速度为v,则有 t=24/v
问题2、我校车棚工程已经启动,规划地基为36平方米的矩形,设一边长为x(米),则另一边长y(米)与x(米)的函数关系式。
3、 归纳得出结论:
一般地,形如y=k/x (k是常数,k不为0)的函数叫做反比例函数。
在此教师对该函数做些说明。
4、 例题讲解:
例1、下列函数关系中,哪些是反比例函数?
(1)、平行四边形面积是12平方厘米,它的一边是a厘米,这边上的高是h厘米,a与h的函数关系。
初中数学八年级教案 篇6
一、教材分析:
反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础,本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。
根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。
因此把教学目标确定为:1.掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2.在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3.通过学习培养学生积极参与和勇于探索的精神。
本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;
难点则是如何抓住特征准确画出反比例函数的图象。
为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的`性质。
鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法
和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力,
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、
对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
(2) 运动会的田径比赛中,运动员小王的平均速度是8米/秒,他所跑过的路程s和所用时间t之间的关系
(4) 王师傅要生产100个零件,他的工作效率x和工作时间t之间的关系
问题1:请大家判断一下,在我们写出来的这些关系式中哪些是正比例函数?
问题1主要是复习正比例函数的定义,为后面学生运用对比的方法给出反比例函数的定义打下基础。
问题2:那么请大家再仔细观察一下,其余两个函数关系式有什么共同点吗?
通过问题2来引出反比例函数的解析式 ,请学生对比正比例函数的定
义来给出反比例函数的定义,这不仅有助于对旧知识的复习和巩固,同时还可以培养学生的对比和探究能力。
初中数学八年级教案 篇7
各位评委,你们好:
我今天说课的内容是华东师大版八年级下册第十八章第四节第一课时反比例函数,
一、说教学内容:
(一)、本课时的内容、地位及作用:
本课内容是华东师大版八年级(下)数学第十八章《函数及其图象》第四节《反比例函数》的第一课时,是继一次函数学习之后又一类新的函数——反比例函数,它位居初中阶段三大函数中的第二,区别于一次函数,但又建立在一次函数之上,而又为以后更高层次函数的学习,函数、方程、不等式间关系的处理奠定了基础。函数本身是数学学习中的重要内容,而反比例函数则是基础函数,因此,本节内容有着举足轻重的地位。
(二)本课题的教学目标:
教学目标是教学的出发点和归宿。因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标:
(1)、通过对实际问题的探究,理解反比例函数的意义。
(2)、体会反比例函数的不同表示法。
(1)、通过两个实际问题,培养学生勤于思考和分析归纳的能力。
(2)、在思考、归纳等过程中,发展学生的合情说理能力。
(1)、通过已有的知识经验探索的过程,体验数学研究和发现的过程,逐步培养学生在教学活动中的主动探索的意识和合作交流的习惯。
(2)、理论联系实际,让学生有学有所用的感性认识。
二、说教学方法:
本课将采用探究式教学,让学生主动去探索,并分层教学将顾及到全体学生,达到优生得到培养,后进生也有所收获的效果。同时在教学中将理论联系实际,让学生用所学的知识去解决身边的实际问题。
由于学生才第一次接触函数,对一次函数尽管已经学习了,但对函数这部分内容不是十分熟练。因此,在教这节课时,要注意和一次函数,尤其是正比例函数与反比例函数的类比。引导学生从函数的意义、自变量的取值范围等方面辨明相应的差别,在学生探索过程中,让学生体会到在探索的途径和方法上与一次函数相似。
对于所设置的两个问题为学生所熟悉,尽量贴近学生生活,或者进入学生生活的圈子里,让学生感受到亲切、自然,激发学生的学习兴趣,提高学生思考问题的积极主动性和解决问题的能力,从而培养对数学学科的浓厚兴趣,使部分学生由不爱学变得爱学,
三、说学法指导:
课堂,只有宝贵的四十五分钟,有相当一部分学生很难驾驭,身不由已,注意力不能集中。针对这种情况,故意设置两个贴近生活的实例,让学生展开想象的翅膀,主动思考,相互探讨,学生互动,师生互动。在想象与探讨的.互动中,迸发出思想的火花,寻求问题的答案DD反比例函数的意义。
为了让学生对反比例函数的意义牢牢掌握和深刻理解,启发学生回忆正比例函数并与之相类比,从内容到形式,学生自主地体会出反比例函数的真正内涵。
在本课时的教学双边活动过程中,抓住初中学生的心理生理特点,尽量运用生动的语言,引发学生的兴趣,吸引他们的注意力;另一方面积极创造条件和机会,让学生发表见解,发挥学生学习的主动性。
教师要善于捕捉学生的反馈信息,并能立即反馈给学生,矫正学生的学法和知识错误。力求体现以学生为主体,教师为主导的原则,在轻松愉快的氛围中,顺利地“消化”本节课的内容。同时,让学生体会到“理论来自于实践,而理论又反过来指导实践”的哲学思想。从而培养和提高学生分析问题和解决问题的能力。
由于学生所学过的一次函数、正比例函数等概念时间已较长,所以在创设情境时对这些知识加以复习,以换取学生以有知识的记忆。回忆师生共同回忆前一阶段所学知识,同时启开新的课题——反比例函数(教师板书)
用两个最贴近学生生活实例引出反比例函数的概念,教师发挥主导作用,启发学生思考。
问题1、
小华的爸爸早晨骑自行车带小华到15千米的镇外去赶集,回来时让小华乘公共汽车,用的时间少了。假设两人经过的路程一样,而且自行车和汽车的速度在行驶过程中都不变,爸爸要小华找出从家里到镇上的时间和乘坐不同交通工具的速度之间的关系。
师问:
(2)、两种交通工具的正常行驶速度一样吗?来去的路程一样吗?时间呢?(生答:不一样、一样、不一样)
师生共同探究,时间的变化是由速度的变化所引起,设小华乘坐交通工具的速度是v千米/时,从家里到镇上的时间是t小时。因为在匀速运动中,时间=路程÷速度, 则有 t=15/v
你从这个关系式中发现了什么?
教师分析变量t与v之间的关系:
① 路程一定时,时间t就是速度v的反比例函数。即速度增大了,时间变小;速度减小了,时间增大。
问题2、
学校校外生物小组的同学准备自己动手,用旧围栏建一个面积为24平方米的矩形饲养场。设它的一边长为x(米),求另一边的长y(米)与x的函数关系式。
初中数学八年级教案 篇8
一、教学目标
1、使学生理解并掌握分式的概念,了解有理式的概念;
2、使学生能够求出分式有意义的条件;
3、通过类比分数研究分式的教学,培养学生运用类比转化的思想方法解决问题的能力;
4、通过类比方法的教学,培养学生对事物之间是普遍联系又是变化发展的辨证观点的再认识。
二、重点、难点、疑点及解决办法
1、教学重点和难点明确分式的分母不为零。
2、疑点及解决办法通过类比分数的意义,加强对分式意义的理解。
三、教学过程
【新课引入】
前面所研究的因式分解问题是把整式分解成若干个因式的积的问题,但若有如下问题:某同学分钟做了60个仰卧起坐,每分钟做多少个?可表示为,问,这是不是整式?请一位同学给它试命名,并说一说怎样想到的?(学生有过分数的经验,可猜想到分式)
【新课】
1、分式的定义
(1)由学生分组讨论分式的定义,对于“两个整式相除叫做分式”等错误,由学生举反例一一加以纠正,得到结论:
用、表示两个整式,就可以表示成的形式。如果中含有字母,式子就叫做分式。其中叫做分式的分子,叫做分式的分母。
(2)由学生举几个分式的例子。
(3)学生小结分式的概念中应注意的问题。
①分母中含有字母。
②如同分数一样,分式的分母不能为零。
(4)问:何时分式的值为零?[以(2)中学生举出的分式为例进行讨论]
2、有理式的分类
请学生类比有理数的分类为有理式分类:
例1当取何值时,下列分式有意义?
(1);
解:由分母得。
∴当时,原分式有意义。
(2);
解:由分母得。
∴当时,原分式有意义。
(3);
解:∵恒成立,
∴取一切实数时,原分式都有意义。
(4)。
解:由分母得。
∴当且时,原分式有意义。
思考:若把题目要求改为:“当取何值时下列分式无意义?”该怎样做?
例2当取何值时,下列分式的值为零?
(1);
解:由分子得。
而当时,分母。
∴当时,原分式值为零。
小结:若使分式的值为零,需满足两个条件:①分子值等于零;②分母值不等于零。
(2);
解:由分子得。
而当时,分母,分式无意义。
当时,分母。
∴当时,原分式值为零。
(3);
解:由分子得。
而当时,分母。
当时,分母。
∴当或时,原分式值都为零。
(4)。
解:由分子得。
而当时,,分式无意义。
∴没有使原分式的值为零的的值,即原分式值不可能为零。
(四)总结、扩展
1、分式与分数的区别。
2、分式何时有意义?
3、分式何时值为零?
(五)随堂练习
1、填空题:
(1)当时,分式的值为零
(2)当时,分式的值为零
(3)当时,分式的值为零
2、教材P55中1、2、3.
八、布置作业
教材P56中A组3、4;B组(1)、(2)、(3)。
九、板书设计
课题例1
1、定义例2
2、有理式分类
初中数学八年级教案 篇9
一、教材分析:
反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。
根据二期课改“以学生为主体,激活课堂气氛,充分调动起学生参与教学过程”的精神。在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。
因此把教学目标确定为:1.掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。2.在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。3.通过学习培养学生积极参与和勇于探索的精神。
本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;
难点则是如何抓住特征准确画出反比例函数的图象。
为了突出重点、突破难点。我设计并制作了能动态演示函数图象的多媒体课件。让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。
鉴于教材特点及初二学生的'年龄特点、心理特征和认知水平,设想采用问题教学法
和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——讨论——交流——总结” 的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。