首页 热点资讯 义务教育 高等教育 出国留学 考研考公
您的当前位置:首页正文

奥数数论问题之余数问题

2024-09-27 来源:华佗小知识

  分析:根据整除性质知:13能整除111111,而2007÷6后余3,所以答案为7.

  2.求下列各式的余数:

  (1)2461×135×6047÷11(2)2123÷6

  分析:(1)5;(2)6443÷19=339……2,212=4096,4096÷19余11,所以余数是11.

  3.1013除以一个两位数,余数是12.求出符合条件的所有的两位数.

  分析:1013-12=1001,1001=7×11×13,那么符合条件的所有的两位数有13,77,91有的同学可能会粗心的认为11也是.11小于12,所以不行.大家做题时要仔细认真.

  4.学校新买来118个乒乓球,67个乒乓球拍和33个乒乓球网,如果将这三种物品平分给每个班级,那么这三种物品剩下的数量相同.请问学校共有多少个班

  分析:所求班级数是除以118,67,33余数相同的数.那么可知该数应该为118-67=51和67-33=34的公约数,所求答案为17.

  5.有一个大于1的整数,除45,59,101所得的余数相同,求这个数.

  分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.

  101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.

  6.求下列各式的余数:

  (1)2461×135×6047÷11

  (2)2123÷6

  分析:(1)5;(2)找规律,2的n次方被6除的余数依次是(n=1,2,3,4……):2,4,2,4,2,4……

  因为要求的是2的123次方是奇数,所以被6除的余数是2.

  7.(小学数学奥林匹克初赛)有苹果,桔子各一筐,苹果有240个,桔子有313个,把这两筐水果分给一些小朋友,已知苹果等分到最后余2个不够分,桔子分到最后还余7个桔子不够再分,求最多有多少个小朋友参加分水果

  分析:此题是一道求除数的问题.原题就是说,已知一个数除240余2,除313余7,求这个数最大为多少,我们可以根据带余除法的性质把它转化成整除的情况,从而使问题简化,因为240被这个数除余2,意味着240-2=238恰被这个数整除,而313被这个数除余7,意味着这313—7=306恰为这个数的倍数,我们只需求238和306的最大公约数便可求出小朋友最多有多少个了.240—2=238(个),313—7=306(个),(238,306)=34(人).

  8.(第十三届迎春杯决赛)已知一个两位数除1477,余数是49.那么,满足那样条件的所有两位数是.

  分析:1477-49=1428是这两位数的倍数,又1428=2×2×3×7×17=51×28=68×21=84×17,因此所求的两位数51或68或84.

  9.有一个大于1的'整数,除45,59,101所得的余数相同,求这个数.

  分析:这个题没有告诉我们,这三个数除以这个数的余数分别是多少,但是由于所得的余数相同,根据性质2,我们可以得到:这个数一定能整除这三个数中的任意两数的差,也就是说它是任意两数差的公约数.

  101-45=56,101-59=42,59-45=14,(56,42,14)=14,14的约数有1,2,7,14,所以这个数可能为2,7,14.

  10.已知三个数127,99和一个小于30的两位数a除以一个一位数b的余数都是3,求a和b的值.

  分析:127-3=124,99-3=96,则b是124和96的公约数.而(124,96)=4,所以b=4.那么a的可能取值是11,15,19,23,27.

显示全文