首页 热点资讯 义务教育 高等教育 出国留学 考研考公
您的当前位置:首页正文

植树教学设计

2024-08-23 来源:华佗小知识

下面是小编收集整理的植树教学设计(共含15篇),供大家参考借鉴,欢迎大家分享。同时,但愿您也能像本文投稿人“许多各个”一样,积极向本站投稿分享好文章。

篇1:《植树》教学设计

活动目标

1、知道3月12日是植树节。

2、了解种树的基本步骤和照顾小树的方法。

3、萌发参加植树活动的兴趣。

活动准备

课件准备:《植树》相关图片、歌曲音频、歌曲原速和慢速伴奏音频

活动过程:

结合图片,了解植树节。

——日历上是几月几号?知道这一天是什么特别的日子吗?

——小朋友们在做什么?

——小结:3月12日这天是植树节,许多人都参与了植树活动。植树节提醒人们要

爱护树木,保护环境。

结合图片,了解植树步骤。

——提问:应该怎样种植树木呢?会用到哪些工具?

——教师结合图片向幼儿介绍植树方法,引导幼儿了解植树的步骤(挖坑→放树苗→培土→浇水)。

小结:要先用铲子挖一个坑,然后把小树苗的根部放进坑里,再用铲子把土盖住树苗根部,确认小树苗站稳了,最后给小树苗浇水。

制作植树牌,导幼儿讨论管理小树的方法。

——小树这么多,我们怎么样才能更好地照顾它们呢?

小结:我们来做植树牌,可以几个小朋友为一组写上名字并且画上喜欢的图案,以后挂在小树上,这样就知道这棵小树是谁来照顾了。要固定时间给它浇水、除草、抓害虫,保护小树不被他人破坏。

活动延伸

区域活动

1.美工区中鼓励幼儿用绘画等形式分组制作植树牌。

2.表演区中播放《我和小树来比赛》歌曲,教师引导幼儿欣赏、演唱并进行自由表演。日常活动

鼓励和引导幼儿为幼儿园里的小树浇水、除草,观察树木的生长。

篇2: 植树教学设计

教学内容:

P10、P11。

教学目标:

1、使学生掌握一位数除两位数及几百几十数的口算除法的计算方法,并能正确的计算。

2、进一步体验除法的意义,感受数学与实际生活的联系。

教学重点:

掌握口算除法的计算方法

教学难点:

能够迅速正确的计算

教学方法:

探索法、练习法

教学过程:

一、复习

口算练习,一位数除整十整百数。

二、新授

1、出示挂图,引导学生看图,渗透环保教育。提出问题:可以分多少组?

2、将学生列的算式及方法板书。并用全班学生一起复述,使每个学生弄白算法。

3、将答案完成在书上。

4、完成试一试第1~2题。

第1题学生独立完成

第2题先说说用什么方法作,然后由学生完成。

三、练习。

完成P111~3题

第一题,学生独立完成

做完后交流算法。

第2题:先让学生看图,明白图意,然后独立完成,集体订正。

第3题:先让学生看图,明白图意,然后根据问题选择有用的数字信息。

四、课堂小结

说说这节课学了什么?自己学得怎样?

学生听算,做完后交流。

学生看图,从图中获得数学信息。

学生独立思考列出算式,探究算法,与同伴进行交流。

独立完成。

集体订正,交流算法。

从图中获得信息,然后独立完成。

学生自己完成,个别学生给于适当辅导。

学生互评,自评。

篇3: 植树教学设计

(一)歌曲引入,了解人物

1、播放大家熟悉的歌曲《春天的故事》,让学生说说歌曲中的老人是谁。(了解多少说多少)

2、老师出示图片,介绍邓小平爷爷。

(二)初读课文,了解大意,认读字词

1、听老师范读全文,想一想:课文主要讲了邓小平爷爷的什么事?

2、自由拼读,勾出生字词。

3、分小组自学生字。

4、自学汇报:

(1)“我会读”:读生字卡片。自愿读;开火车读。

提示:看清声母读:植、岁、站、栽。

看清韵母读:龄、行。

(2)“我会记”:指名向大家介绍识字方法。

(3)“我会写”:指名先在田字格中写字,再对照课本中的字,发现规律,描红、临写。

(三)读文讨论,评价人物

朗读课文,讨论问题:

1、你觉得邓小平爷爷是个怎样的人?你是从课文的哪些地方看出来的?

2、为什么说“小平树”成了天坛公园一处美丽的风景?

讨论方式:先自己读书感悟,再小组交流,然后各组派代表在全班交流,最后老师评价总结。

(四)实践活动

1、观察校园、花园里有哪些植物,每种植物有什么特点。选一种最喜欢的植物画一画。

2、照课后说的那样做:“植树节快到了,我们也去植树吧!”

篇4:植树教学设计

教学目标:

1、正确、流利地朗读课文

2、学习生字新词

3、初步感知课文内容,理解课文一、二节的内容

教学重、难点:

1、正确、流利地朗读课文

2、初步感知课文内容,理解课文一、二节的内容

教学用具:挂图

教学设计:

一、节日导入

1、同学们,我们刚从快乐的春节走来,又应来了另一个热闹的节日—————元宵节,谁能告诉我元宵节在什么时候吗?有什么习俗呢?

(正月十五,观灯、吃元宵)

2、你们还了解哪些节日呢?(复习传统节日和习俗)

3、谁知道每年的3月12日是什么节日呢?

请学生介绍植树节的知识,老师补充。

4、走,让我们迎着和煦的春风,一起去植树!

板书课题:1、走,我们去植树

二、新授

1、质疑课题

(1)、课题中的“我们”指的是谁呢?

(少先队员)

(2)、通过这个课题,你能说一说这篇课文的主要内容吗?

2、自读课文,出示自读要求

(1)、读准生字词

(2)、小组交流课文中不理解的生字词语

(3)、标出课文段落

3、全班交流(这个环节尽量由学生组织完成,老师只作为一个引导、解惑者)

(1)、全班交流小组仍不能解决的生字新词(尽量由学生解答)

(2)、请学生说一说如何记住生字新词的(复习学习生字的方法)

4、全班齐读课文

5、少先队员们去植树时的心情是怎样的?你从哪些词语看出来的?

(心情愉快的;和煦、轻快、欢声笑语)

6、出示课文挂图(春光明媚,三个少先队员带着工具去植树)

请学生说一说挂图的内容,抓住少先队员的愉快心情(锻炼学生的口语表达、看图说话能力)

7、少先队员们在哪儿植树呢?

齐读第二节

这一小节中有一个省略号,谁能说一说省略号在这里的作用呢?

谁来补充一下省略号的'内容?

8、理解“伴随金色童年的是一棵棵青翠的小树”这句话的意思。

(少先队员是祖国的未来,他们今天像载下的小树,在阳光雨露下,健康、蓬勃地成长,将来就是建设祖国的栋梁之材)

9、指导朗读第一、二小节

采取小组赛读、男女生读、指名读等多种朗读方式进行朗读训练

10、指导写字。

篇5:植树教学设计

教学目标

1、认识15个生字。

2、朗读课文,背诵课文。

3、感悟课文内容,知道植树的好处,体验植树的快乐,感受自己象小树一样成长。

教学重难点

1、认识15个生字。

2、感悟课文内容,朗读课文,背诵课文。

教学过程

一、看图激趣,引出课题。

1、出示图片:画面上画了什么?你了解到了什么?

2、出示课题:我们去植树

3、齐读课题,教师重点指导“植”的读音。

二、初读课文,认识生字。

1、自由读文,找一找哪些读音自己读不准。

2、听老师范读课文,学一学自己读不准的字音。

3、自己在课文中找到要求认的字,并画出词语,再读一读。

4、出示词语卡片进行认读,再出示会认字的卡片进行认读。说说你记住了哪些生字,用什么方法记住的。

5、再读课文,你想提醒大家注意哪些字的读音?

三、解读课文,朗读课文。

1、读一读第一段,你了解到什么?

(1)、我们是怎样种树的?

(2)、边看图边读,你有什么感受?

2、你们想到哪儿去种树?快读第二自然段。

(1)、指名读,从马路、小山、河岸的话中你们体会到什么?

(2)、教师引读,听了这些感谢的话你们会怎么说?

(3)、表演读。

(4)、练习背诵。

3、自由读第三四自然段,你又了解了什么?

(1)、小树给我们带来哪些快乐?

(2)、我们和小树之间有哪些相似的地方?

(3)、快带着快乐读读课文吧。

(4)、试着背一背这两个自然段。

四、小组讨论,自由发言。

学习了这一课你有什么想法?

第二课时

教学目标

1、会写八个会写字,学习新笔画。

2、朗读课文,背诵课文。

教学重难点

1、认识15个字,会写8个生字。

2、感悟课文最后一句话的意思。

教学过程

一、朗读课文,背诵课文。

1、准备活动。

分四人小组进行讨论:用什么方法汇报上节课你的收获?怎么汇报?

2、汇报。

(1)、朗读课文。

(2)、背诵课文。

(3)、读自己积累的好词佳句。

二、识字写字。

1、抽读识字卡片,开火车读。

2、抽读识字卡片,指名读后齐读。

3、观察这些字,你能为它们分分组吗?

4、按笔顺写一写这些字。

5、你有什么好办法记住它们?

6、写字指导。

(1)、观察“洒”字,哪两笔最难写?是怎样占格的?

(2)、动笔写一写,边写边订正。

7、其他字的书写练习。

(1)、强调书写姿势和书写习惯。

(2)、课堂巡视,个别辅导。

板书设计:

2我们去植树

栽端铲洒

我们小树

篇6: 植树教学设计

教学目标

[德育目标]:培养学生爱护花草树木的良好品行和做“保护环境小卫士”的意识。

[智育目标]:初步了解植树对人们生活的影响,从自身做起,不做损坏花草树木的事情。

[素质发展目标]:1.知道3月12日是我国的植树节。2.知道植树种花的意义,人人应该爱护花草树木。

教学重点难点

[教学重点]:让学生知道植树种花的意义,培养学生从自身做起,不做损坏花草树木的事情,培养学生爱护花草树木的良好品行。

[教学难点]:让学生知道植树种花的意义,培养学生爱护花草树木的良好品行。

教学准备

相关知识的介绍、头饰课件

学生活动设计

“花草树木的作用”、“表演我爱花我爱草”、“实践活动”

【导入新课】

老师:同学们,春天是个美丽的季节,大家说一说它为什么美丽呢?

老师:大家说得很好,大家想一想如果没有了花草,没有了树木,我们得春天还会美吗?

老师:没有了花草树木,春天当然不会再美丽了;但是大家放心在将要来临的3月12日是我们国家专门保护花草树木的节日,这就是植树节。

【讲授新课】

一、植树节(板书)

老师:同学们,打开课本三十三页,我们看一看图中画的什么?然后说一说。

老师:大家说得很好,这一页是由4幅图组成,图l为植树节的日历牌,告诉大家3月12日是我国的植树节;图2为国家^令页~导人爷爷植树的场景;图3为青年志愿者积极踊跃地参加植树活动;图4展现的是学生较为熟悉的活动,是老师和学生一起美化校园,高兴地将花草种植在校园里,使校园显得更加生机勃勃。

老师:大家欣赏完图片有什么感想呢?给大家说一说。

老师:这些图片主要表现了全民动员、植树造林的活动场景。通过这些我们可以看出植树节是个有意义的节日,我们国家对植树造林非常重视。但是大家知道这是为什么吗?种植花草树木对我们有多大的意义呢?

二、种植花草树木的意义(板书)

老师:大家说一说花草树木对我们有哪些好处呢?

老师:请大家打开课本第三十四页,看看图中的小朋友们都知道哪些,大家想的是不是一样?

老师:从中我们可以知道种植花草、植树造林有好多的好处:提供氧气、美化环境、动物的栖息地、提供木材和瓜果、阻挡风沙、蓄水、防止水土流失等。它不但有很大的直接经济价值更有极大的间接经济价值。大家知道树木是怎样阻挡风沙,防止水土流失的吗?

(让学生欣赏视频“树木和水土流失的关系”、“土地沙化和树木的'关系”,是学生知道树木是怎样阻挡风沙、防止水土流失的。)

老师:这回大家明白树木对我们的作用了吧。我们再看一下破坏树木对我们的影响。[

(欣赏视频“破坏森林”、“破坏森林对物种的影响”、“森林砍伐造成沙漠化”和图片“防护林遭破坏(一)”、“防护林遭破坏(二)”。)

老师:我们从中看到了破坏树木对我们的危害是多么的大啊!如果我们都像看的那样破坏树木的话,我们会怎么样呢?

老师:大家说得很好,所以我们要爱护花草树木。(过渡)

三、爱护花草树木(板书)

老师:同学们,我们一起看课本第三十五页,然后大家讨论一下图中的同学在做什么,他们做的对不对,为什么?然后说一说。

老师:大家说得很好,图中的同学不应该只顾自己的享受而对花草树木的进行伤害。我们应该“不掐花、不践踏草坪、不在树上刻字、不做伤害小树的事情”,对不对?

老师:接下来,我们看课本第三十六页,我们大家根据图中的提示来进行分组、模拟表演,好吗?

(学生分组、进行模拟表演。)

老师:刚才大家一定从表演当中学到了一些东西,我们课下该怎么做呢?我们可以看课本第三十七页,我们能从中学到什么,我们还能做什么?大家想一想,然后说一说。

老师:下面我们再来评一评这三个小朋友说得对不对:在公园里,小红摘了一朵花,小亮折了柳枝,小明践踏草坪。大家都说他们做得不对,可小红说:“我只摘了一朵花。”小亮说:“我只折一根树枝。”小明说:“我只踩了一点小草,有什么关系。”

老师:他们当然不对,如果每个人都这样想:我破坏一点儿没关系。很多人都这样做,就会造成很大破坏。所以,爱护花草树木一定要从我做起,从爱护一朵花,一根小树枝,一点小草做起,这也是一个人讲文明,遵守公德的表现。还有就是不是只有3月12日才植树,才进行花草树木的保护,我们应该时刻都那么做。

(最后,让大家学唱儿歌“植树歌”。)

【课堂小结】

本课主要通过让同学们结合课本图片说一说,老师采用启发式引导,以及通过多媒体手段等辅助,使学生知道3月12日是我国的植树节,知道植树种花的价值所在,还通过游戏等学生喜欢的形式,学生通过对本单元《春游》、《春天的活动》两个主题活动的学习,已经知道春天是种植的季节。

这时,恰逢植树节来临了,对于一年级的学生来说,虽不适合参加植树,但要知道植树种花的价值所在,培养学生要从我做起,爱护花草树木,做“保护环境小卫士”的意识是十分必要的。花草树木是人类的朋友,爱护花草树木是每个人的责任,教育学生从小爱护花草树木,遵守社会公德是十分重要的。

篇7: 植树教学设计

教学内容:人教版小学数学教材五年级上册第106页例1及相关内容。

教学目标:

1.建立并理解在线段上植树(两端都栽)的情况中“棵数=间隔数+1”的数学模型。

2.利用线段图理解“点数=间隔数+1”“总长=间隔数×间距”等间隔数与点数、总长、间距之间的关系,解决生活中的实际问题。

教学重点:建立并理解“点数=间隔数+1”的数学模型。

教学难点:培养用画线段图的方法解决问题的意识,并能熟练掌握这种方法。

教学准备:课件。

教学过程:

一、情境出示,设疑激趣

教师:哪位同学知道我们国家设立的植树节是在哪一天?(3月12日)在这一天的植树活动中,遇到了这样一个问题。(课件出示问题)

例1:同学们在全长100 m的小路一边植树,每隔5 m栽一棵(两端要栽)。一共要栽多少棵树?

教师:你能利用所学的知识解决问题吗?

预设1:20棵。(教师追问:你是怎么想的?)每隔5 m栽一棵,共栽100÷5=20(棵)。

预设2:我认为是21棵,因为题目中写着“两端要栽”,所以要再加1棵。

教师:你认为哪一个结果是正确的?(指名回答)

【设计意图】直接出示例题的情境,通过学生的尝试解答,既是对教学起点的了解,又利用两种不同的结果设置疑问,激发了学生探求新知的热情。

二、经历过程,感受方法

教师:可以用怎样的方法进行检验呢?(画线段图)那我们可以在草稿本上试一试。遇到了什么困难?

预设:100 m太长了,不太好画。(追问:那我们可以怎么办?)

学生:可以先用简单的数试一试。(课件出示)

【设计意图】使学生经历分析思考的整个过程,感受“猜测──验证”的学习方法。在实际操作中发现问题有助于激发学生的思考,从而深刻地体会“从简单事例中发现规律,并利用此规律解决较复杂问题”的数学思想。

三、探索实践,建立模型

教师:先看看20 m的距离,在两端都栽的情况下可以栽几棵树,在草稿本上画一画。

实物投影或课件出示:

教师:说说你是怎么想的?

预设:20÷5=4,20 m被平均分成4段,因为两端要栽,所以要栽5棵树。

教师:再画一画,25 m可以栽几棵树?(学生操作)谁来说说你的想法?

预设:25÷5=5,就是把25 m平均分成了5段,因为两端都要栽,所以要栽6棵树。

还可以这样画:这里的蓝色线段表示什么?(间隔数)红色线段呢?(植树棵数)

教师:不画图,你能把下面的表格填写完整吗?

(根据学生回答,教师在课件上输入数据)你发现了什么规律?

预设:棵数要比间隔数多1。(追问:可以用怎样的一个式子表示?)棵数=间隔数+1。

教师:谁能说说为什么要“+1”?(因为两端都要栽,所以栽树的棵树比间隔数多1。)你能用发现的规律解决开头的'问题吗?(指名回答,分析讲解)

教师:回顾这个问题的解答过程,说说你的想法。

归纳小结:在解决较复杂或数据较大的问题时,可以先从简单数据出发得出规律,然后将规律运用于复杂问题进行解决。

【设计意图】“画示意图──抽象出线段图──不画图”的教学过程,体现了从具体到抽象、从特殊到一般的设计理念,也正是在这一进程中,通过积极有效的教学活动,使学生建立起“一条线段两端都栽”这类植树问题的数学模型。

四、利用新知,解决问题

教师:根据刚才学到的知识,还可以解决许多生活中的问题。(课件出示问题)

1.在一条全长2 km的街道两旁安装路灯(两端也要安装),每隔50 m安一盏。一共要安装多少盏路灯?

教师:读完这个题目,你觉得有哪些地方需要特别引起注意?

预设1:单位不统一,要先进行转化再计算。

预设2:两旁。(追问:表示什么?)就是两边。你能通过画图的方法表示出“两旁”吗?在计算时该怎样体现?(先算出一边的路灯的数量,再乘以2。)

学生练习,指名回答。

2 km=20xx m(20xx÷50+1)×2=82(盏)

答:一共要安装82盏路灯。

教师:20xx÷50算的是什么?(间隔数)“+1”说明了什么?(两端都要安装)

2.马路一边栽了25棵梧桐树。如果每两棵梧桐树中间栽一棵银杏树,一共要栽多少棵?

教师:仔细读题,认真思考,说说你对这个题目的理解。

引导得出:要求一共栽多少棵银杏树,实际就是求梧桐树的间隔数。由“棵数=间隔数+1”可得“间隔数=棵数—1”。

25—1=24(棵)

答:一共要栽24棵银杏树。

教师:可以用怎样的方法验证结果是否正确?(可以先用比较简单的例子,通过画线段图的方法进行验证)和这题有关的简单的例子,我们只要张开一只手。五个手指相当于题目中的?(梧桐树)每两个手指之间栽一棵(银杏树),可以栽几棵?你还有其他的方法吗?

【设计意图】练习中的实际问题,相比例题有一些变化,对于学生的理解能力提出了更高的要求。第1题用画图的方法直观地表示出“两旁”,解决了算式中为什么要“×2”的问题;第2题先让学生思考,说说自己的理解,验证的环节既是对方法的回顾,又体现了数学的趣味性。

五、逆向思考,拓展新知

园林工人沿一条笔直的公路一侧植树,每隔6 m种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远?

教师:读题并思考,要求“从第1棵到最后一棵的距离”就是求什么?(路长)跟例题相比,有什么不同?

预设:例题是知道了路长求栽树的棵数,这题是知道了栽树的棵数,求路线长度。

教师追问:该怎样解答呢?试一试,并说说你的思路。

(36—1)×6=210(m)

答:从第1棵到最后一棵的距离是210 m。

教师:“36—1”算的是什么?(间隔数)再根据“间隔数×间隔距离=路长”计算。

【设计意图】通过变式练习,加深学生对例题中发现的规律的理解。该题是植树问题数学模型的逆向应用,有了前一题“间隔数=棵数—1”的知识为基础,学生应该能比较容易地解决这一问题。对于学习有困难的同学,也可引导他们用画线段图的方法解答。

六、回顾思考,全课总结

教师:通过这一节的学习,你有什么收获?跟大家交流一下。

根据学生回答,强调:

1.解决两端都要栽的植树问题的数学模型:棵数=间隔数+1。

2.当遇到较为复杂的数学问题时,可以先从简单的事例中发现规律,然后应用找到的规律来解决原来的问题。

篇8: 植树教学设计

教学内容:

人教版小学数学五年级上册第106页例1。

教学目标:

1、知识与技能目标:

(1)、初步认识植树问题,理解并掌握在一条直线上“两端都栽”的情况下,间隔数和棵树之间的关系。

(2)、在理解间隔数和棵树规律的基础上解决简单的“两端都栽”的实际问题。

2、过程与方法目标:

(1)、通过观察比较、动手操作、合作交流等活动探究新知,经历知识的形成过程。

(2)、经历和体验“数形结合”、“化繁为简”的解题策略和数学方法。

(3)、培养学生的合作意识,养成良好的交流习惯。

3、情感态度与价值观目标:

(1)、感受数学在生活中的广泛应用。

(2)、在自主探究的过程中体验成功的喜悦,树立学生学习数学的决心。

教学重点:

通过动手操作、合作交流,探究出植树问题中两端都栽时,间隔数和棵树之间的关系,抽象出植树问题的数学模型。

教学难点:

把现实生活中类似的问题同化为“植树问题”,运用植树问题的模型解决一些相关的实际问题。

教学过程:

一、谜语导入。

(1)、师:同学们一定喜欢玩猜谜语吧?(课件出示):两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。(谜底:手)

谁能很快说出谜底?(生口答)。

师:你思维真敏捷。

(2)、师:同学们,伸出你的左手,仔细观察,你能看到数字几?

(3)、认识间隔、间隔数。

(预设1:数字5,5个手指;数字4,4个手指缝。)

师:你观察得真认真!

师:(课件出示)手指间的空隙,在数学上我们叫做间隔。(板书:间隔。)一只手上有四个间隔,我们就说它的间隔数是4。(板书:“间隔”后加“数”)

(预设2:生:有5数字5,5个手指头;有数字4,手指之间有4个间隔。

师:你懂得真多,能告诉大家什么叫做间隔吗?

生口答,师出示手的图片,板书“间隔”和“间隔数”。)

(4)、认识生活中的“间隔”。

师:生活中间隔无处不在。(课件出示:人民大会堂柱子、路灯杆、摆花盆、钟声等),师边放课件边叙述说明。

师:想一想,生活中还有哪些地方有间隔?

生充分交流

(5)、揭示并板书课题。

师:像这样有间隔现象存在的问题,统称为植树问题。(板书:植树问题)。今天我们就一起来探究有关植树问题的知识。

二、合作探索,了解三种植树方法

1、直接出示题目:

在一条长20m的小路一边植树,每隔5m栽一棵。可以怎样栽?

师:我们可以用一条线段来表示小路的长(来时在黑板上画出线段),用这个(三角形加一竖,写在副板书上)来表示树,请大家来设计设计,看看哪个小组最能干?

2、小组交流。

师:请同学们以小组为单位,按照合作要求,完成方案。(出示合作要求) 合作要求

(1)小组内猜一猜:可以栽几棵树? (2)自己独立动手画一画;

(3)小组内说一说:你是怎样画的?

3、汇报。

师:谁来说一说,你栽了几棵树?谁还有不同的答案?

(2)师:哦,看来同学们有的栽了4棵,有的栽了5棵,还有的同学栽了3棵,咱就先请栽了5棵的同学来说说,你是怎么栽的?(追问:跟同学们详细的说一说,你是怎样画的?)

有哪些同学是4棵的?说说你是怎样栽的?

刚才听到有同学说栽了3棵,来说说你是怎样栽的? (学生评价)师:你觉得他们说的怎样?

4、三种植树方法的命名。 师:(指着第一种)像这种,在路的起点和终点都栽了树那我们就可以把它叫做“两端都栽”(板书),那像这种了,头栽尾不栽,或者尾栽头不栽,可以叫做——( 只栽一端 ),这种呢?(两端都不栽)

1、出示题目信息:一条新修的公路,全长100米,在它的一侧种树(两端都栽),每隔5米栽一棵,一共要栽多少棵?

2、理解题意。

(1)、从题目中你得到了哪些数学信息?

(2)、理解题意。

师:解决问题时,要善于抓住关键词或句子,分析题意。你认为哪些词是比较重要的?

题目中,“两端都栽”是什么意思?

师:既然有“两端都栽”的情况,就有“两端都不栽”的情况,也有“只在一端栽”的情况。(课件演示:两端都栽,两端都不栽,一端栽一端不栽三种情况。)今天我们重点研究两端都栽的情况。

(3)、同学们大胆猜测一下,一共要栽多少棵?

(指名生答)

(4)、提出验证。

a:师:到底哪个结论是正确的呢?我们怎么来验证一下?

b:生尝试寻求方法。

生:可以画一画图。

师:你的想法非常好,可以用一条线段代表100米长的公路,画一画图,数一数实际种了多少棵。)

(5)、尝试验证,边叙述边课件演示:因为两端都栽,所以要先在起点栽一棵,然后每隔5米栽一棵,再隔5米再栽一棵,再隔5米再栽一棵……看看一共要栽多少棵。

师:现在栽了多少米了?就这样一直栽到100米处吗?

(预设生:太麻烦了,浪费时间)

(6)寻求“化繁为简”的数学方法。

师:老师和你们有同感。100米的路太长了,你觉得路的总长要是多少米好了?

生尝试发表自己的想法。

(预设生:50米、20米、10米

师:我明白同学们的意思了,就是把路的总长换成比较小的数就行了。你们的想法太棒了!)

师:在数学研究中,遇到比较复杂的问题时,我们就从简单的问题入手,即把“大数变成小数”进行研究,这样就可以“化繁为简”,找出规律。(板书:大数——小数,化繁为简)。比如,100米太长了,我们可以转化成15米栽几棵、25米栽几颗?从而找出规律。

师:老师在电脑上可以画成小树,你们在练习本上,也画成一棵棵小树吗?怎样表示小树比较简单?

(预设生:画成小树太麻烦,可以用一个点表示一棵小树比较简单。)

师:你的方法真好!用线段图来表示,简单明了。(课件演示:小树变点,成为线段图)

(二)、自主探究。

(1)、师:同学们,今天你们就来当一次“小小数学家”,研究一下当总长分别是10米,15米、20米、30米时,两端都栽的情况下,棵数有什么规律。请你们拿出题卡,认真画出线段图,并结合线段图把表格中的数据补充完整。

(2)、生独立填表。

(3)、汇报交流:谁把你的结果向大家展示一下?

(师:谁和他的结果一样请举手?

师:看来大家都做得非常认真!)

师:为了便于大家观察,我把表格展示在大屏幕上。

(4)、师:(边课件演示边引导)仔细回忆刚才画线段图填表的过程,认真分析这几组数据,能否说出总长、间隔、间隔数之间存在什么关系?(课件表格下出示:总长o间隔=间隔数)

间隔数与棵数之间又存在什么样的'关系?(课件表格下出示:间隔数o( )=棵数)。

那么,当两端都栽时,如果知道全长和间隔,怎样求出棵数?

(5)、学生独立思考,充分交流。

结合生答,师完成板书:总长÷间隔=间隔数,间隔数+1=棵树。

(6)、师:如果不画线段图,你能说出总长是50米时,每隔5米栽一棵,两端都栽,一共要栽多少棵吗?

学生口述答案。

师:你真了不起!

(三)、应用规律,解决问题。

(1)、出示前面的例题。

师:利用刚才我们发现的两端都栽时,棵数和间隔数之间的关系,你能找到这道题的正确结果吗?

(2)、生找出正确解法。

(3)师:20表示什么意思?为什么要加1?(20表示间隔数,因为间隔数加一等于棵树,所以要加一。)

(师:你讲得太棒了!老师真心佩服你!) (4)、师:以后再遇到生活中类似于“两端都栽”的实际问题时,就可以运用我们今天学到的知识进行解决。那么现在就请运用我们所学的知识到知识城堡一展身手吧。看哪位同学是数学闯关达人!

三、学以致用。

1.园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。从第1棵到最后一棵的距离有多远? (课件配图片出示)

生独立审题,尝试在练习本上独立完成。

师提醒学生注意这里的棵树是多少?6米是什么意思?让我们解决的是什么问题?

2.在一条全长180米的街道一旁安装路灯,(两端都要安装),每隔6米安一座。一共要安装多少座路灯?

生独立审题,尝试在练习本上独立完成。

这道题180米表示的什么意思?6米又代表什么呢?让解决的是什么问题?如何列式计算?

3.钟声与钟声之间也有间隔,你能同化成植树问题进行解答吗?

(课件出示)广场上的大钟,5时敲5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

指名读题,理解题意。

师:同学们,认真倾听钟声敲响几下?仔细观察它们之间有几个间隔?(课件出示:结合5次钟声,线段图出示四个间隔)

(学生结合课件演示,说出:钟声敲响5次,共有4个间隔。)

大钟5时敲5下,有4个间隔,共用了几秒钟?由此能求出什么?那么12时敲12下,有几个间隔?敲完用多长时间吗?请同学们尝试独立在练习本上完成。

汇报交流,说出思路。

四、全课总结。通过今天的学习,你有什么收获?

生充分交流。

师:在今天的探究活动中,我们不仅发现了植树问题中“两端都栽”的规律,能运用这个规律解决生活中类似的问题,而且知道了数学研究中“化繁为简”方法,会通过画线段图帮助我们解决数学问题。其实,在植树问题中还有许多知识,比如两端都不栽时、只有一端栽时,或在封闭图形上栽时,棵数分别有什么规律呢?那么这道提留给大家!我们将在下次课的学习中继续探究。

拓展延伸:

现在要在这条1000米长的公路的一侧安放垃圾桶(只在其中一端放或者两端都不放),每100米安放一个。一共需要多少个垃圾桶?

篇9: 植树教学设计

教学内容:人教版小学数学教材五年级上册第107页例2及相关内容。

教学目标:

1.建立并理解在线段上植树(两端都不栽)的情况中“棵数=间隔数-1”的数学模型。

2.通过画线段图初步培养学生探索解决问题的有效方法的能力,尝试用植树问题的模型解决实际生活中的简单问题,培养应用意识。

教学重点:建立并理解“棵数=间隔数-1”的数学模型。

教学难点:培养学生探索解决问题的有效方法的能力。

教学准备:课件。

教学过程:

一、创设情境,复习引入

教师:上节课,我们学习了植树问题中两端都栽的情况,谁能说一说是用怎样的数学模型解决这类问题的?(棵数=间隔数+1)能快速地完成下一题吗?(课件出示题目)

准备题:绿化队要在相距60 m的小路一边植树(两端都栽),相邻两棵树之间的距离是3 m。一共要栽多少棵树?

指名回答:60÷3+1=21(棵)答:一共要栽21棵树。

再来看看这一题(课件出示例2)认真思考,这两个题目有什么不同?

大象馆和猴山相距60 m。绿化队要在两馆间的小路两旁栽树(两端不栽),相邻两棵树之间的距离是3 m。一共要栽多少棵树?

【设计意图】例2是在例1的基础上教学的,对已学知识的复习是为了找准知识迁移的“原点”,为下一个环节的教学做好铺垫。

二、比较分析,迁移新知

教师:你能用画图的方法表示出你的发现吗?同桌之间可以互相交流。(指名汇报)

预设1:准备题是一边,例2是小路两旁。(追问:在图上该如何表示?)就是有两条线段。(怎么计算?)只要先算出一边的树木数量,再“×2”就可以了。

预设2:准备题是两端都栽,例2是两端不栽。(追问:你能通过示意图说说为什么吗?)因为小路的两端都是场馆。

教师:这个题目该如何解决呢?你想到了什么方法?(可以先从简单的事例中发现规律)请你在草稿本上试一试。

【设计意图】通过比较分析,使学生更为深刻地理解题意,引导“用画图的方法表示出来”对于培养学生良好的审题习惯具有非常重要的作用。该环节的设计还重点突出了对“先从简单的事例中发现规律,再将规律应用于问题的解决”这一数学方法的迁移。

三、理解归纳,得出模型

指名回答,过程预设:

1.先画一个简单的线段图看看,以20 m长的线段为例,在两端都栽的情况下“棵数=间隔数+1”,需要栽5棵树。

2.同样长的线段,在两端都不栽的情况下只需要栽3棵树,也就是说栽的棵数比间隔数少1。(教师追问:可以用怎样的数学模型表示?)棵数=间隔数-1。

教师:你能用不同的方法试一试,对这一数学模型进行验证吗?(学生操作,交流发现。)运用这一模型,例2可以怎样解答?

60÷3-1=19(棵)19×2=38(棵)

答:一共要栽38棵树。

教师追问:为什么要“×2”?(因为小路两旁都要栽树)

教师小结:我们一起来回顾一下这个题目的解决过程。通过与例1中两端都栽的植树问题相比较,采用同样的方法得出了两端不栽的植树问题的数学模型,即棵数=间隔数-1。

【设计意图】通过教师的引导,促使学生自主探索,经历了问题解决的整个过程,对数学思想的渗透也在知识的'迁移和转化过程中得到了体现。在教学实际中,可结合“你能用不同的方法对这一数学模型进行验证吗?”这一问题,进行开放式的教学实践,鼓励学生用自己的方法探索出规律。

四、课堂练习,应用新知

教师:利用这一数学模型,还能解决许多生活中的问题。

1.一条走廊长32 m,每隔4 m摆放一盆植物(两端不放)。一共要放多少盆植物?

学生练习,指名回答:

32÷4-1=7(盆)

答:一共要放7盆植物。

教师:如果改为两端都放,该怎么算?

32÷4+1=9(盆)

教师:这两种不同的摆法相差几盆?(2盆)为什么?(两端都放时,盆数=间隔数+1;两端都不放时,盆数=间隔数-1。)

2.一根木头长10 m,要把它平均分成5段。每锯下一段需要8分钟,锯完一共要花多少分钟?

教师:这个问题和我们学习的植树问题有关联吗?属于植树问题中的哪一种情况?可以先用画图的方法试一试。

学生练习,分析讲评:

10÷5-1=4(次)8×4=32(分钟)

答:锯完一共要花32分钟。

【设计意图】第1题在完成后进行了比较练习,加深了学生对两种不同数学模型之间关系的认识;第2题虽然不是植树的情境,但规律是相同的,引导学生通过画线段图的方法即可抓住题目的本质,同时扩展了学生对所学知识的应用视野。

五、利用变式,强化认知

小明家门前有一条35 m的小路,绿化队要在路旁栽一排树。每隔5 m栽一棵树(一端栽一端不栽)。一共要栽多少棵?

教师:这题与已经学过的植树问题有什么不同?(一端栽一端不栽)先猜一猜,再用自己喜欢的方法验证结果是否正确。

预设1:两端都栽的情况下,棵数=间隔数+1;两端不栽的情况下,棵数=间隔数-1。这种一端栽一端不栽的情况,应该是棵数=间隔数。

预设2:是用画线段图的方法得出的,一共要栽7棵。

预设3:直接用35÷5=7(棵)。(教师追问:35÷5算的是什么?)间隔数。(用这样的方法计算其实是以什么作为依据的?)在一端栽一端不栽的情况下,棵数=间隔数。

教师:比较植树问题的三种情况,说说你自己的理解。

【设计意图】以已学知识为基础,放手让学生独立思考,鼓励用自己喜欢的方法探索这种情况的规律,在最后的比较环节也强调说出自己的理解。学生通过这样的方式获取的知识、思维活动的经验才能更加鲜活和深刻,充分体现了“不同的人在数学上得到不同的发展”这一基本理念。

六、课堂小结,布置作业

小结:植树问题在生活中的应用非常广泛,在解决这类问题时,应该先判断出属于哪一种情况,再根据题意列式解答。

课外作业:先判断以下各题属于哪种情况,再列式解答。

(1)在一条长2千米的公路的一边栽白杨树,每隔8米栽1棵,最多可以栽多少棵?最少可以栽多少棵?

(2)搬运工从一楼到二楼,走了16级台阶,王丽家住6楼,每相邻两层台阶相同,从一楼到六楼一共走多少级台阶?

(3)一个古老的摆钟,于六时整敲响六下,需时五秒钟;那么,在正午敲响十二下时,需时多少秒?

篇10:《植树问题》教学设计

《植树问题》教学设计

《植树问题》教学设计

本文来自:教师招考论坛作者:平潭一中九八届

植树问题

执教教师:福州市麦顶小学刘凌芳

指导教师:福州市麦顶小学郑祥东

张尊贵

设计理念

本节课通过解决一个实际问题,引出植树问题自主探究建立知识模型灵活应用,解决一些实际问题。本节课教学的最终目的是希望学生在学习这节课之后,能明白解决类似植树问题的题目时,较好的方法是先画图,然后根据图来发现规律,从而解决问题。即利用“数形结合”的思想解决问题。

教学内容

《义务教育课程标准实验教科书数学》(人教版)四年级上册第117--118页例题1及相关练习。

学情与教材分析

综合实践活动课是培养学生创新精神和实践能力的一门重要课程,而创新思维能力是其中的核心问题,它能使学生在各种探究学习活动中,有效地进行帮助学生形成主动探究问题的习惯和能力,为创新能力的发展打下基础。“植树问题”是人教版新课程标准实验教材四年级下册“数学广角”的内容。大家都知道,数学的思想方法是数学的灵魂。本册安排“植树问题”的目的就是向学生渗透“对应”和“复杂问题从简单入手”的思想。为此,本课制定了三个教学目标:

1.通过探究发现一条线段上两端都种、两端都不种和只种一端三种不同情况植树问题,初步知道和掌握在一条线段上植树问题的规律,会正确解决类似的数学问题。

2.学生经历和体验“复杂问题简单化”的解题策略和方法。

3.让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

教学目标

1.初步知道和掌握在一条线段上植树问题的规律,会正确解决类似的数学问题。引导学生用画线段图的方法分析理解题意,初步培养学生解决植树问题的有关能力。

2.经历用一一对应的数学思想解决实际问题的过程,体验“复杂问题简单化”的策略及分析解决问题的方法。初步培养学生的探究意识和能力。

3.体会植树问题在日常生活中的广泛应用,激发学生学习情感与求知欲望,渗透对应思想,并对学生进行热爱劳动,保护环境的教育。

教学重、难点

理解种树棵树与间隔数之间的关系,会应用植树问题的模型解决一些相关的实际问题。

教、学具准备

实物投影仪,线段图等。

教学过程

一、创设情境,导入新课,渗透对应思想

师:同学们,认得这是什么吗?

(课件出示三明治图片)

师:你能按照一定的顺序说说它是由什么组成的吗?

师:你们知道这样的排列叫什么排列吗?

师:一片面包间隔一片肉,在数学上,我们把这种排列叫“间隔排列”。

(板书:间隔)

师:下面有个挑战性的问题。刘老师听说最近有一个面包店要做一块全世界最大的三明治,供几百人吃一餐。面包片,肉片按以上间隔排列,正好排完,不用数,你能判断面包片与肉片谁的数量多?

【设计意图:以有个挑战性的问题做一块全世界最大的三明治,引入本课的学习,增强了学生的好奇心与探究欲,使学生全身心地投入到学习活动中来。】

师:为什么你认为面包片多?

师:同学们说的真棒!因为前面都是一一对应,最后一个是面包,所以面包片多。今天我们就用“一一对应”的思想来研究植树问题。

(板书:对应、植树问题)

二、自主学习,合作探究,建立数学模型

㈠探究植树问题的三种情况

师:几个月前,我们福州新修建了一条步行街,即台江步行街。

(课件展示台江步行街)

师:这么美的步行街在建设初期只是一条光秃秃的道路,怎样美化它呢?可以在街旁种树!瞧!

(课件出示题目:给1000米长的台江步行街一边植树,每隔5米栽一棵,需要准备多少棵树?)

师:从图上中你得到什么信息?要解决什么问题?

请你先猜一猜。

【设计意图:猜测是一种培养学生推理能力的好方法。这时学生的思维非常活跃,想表达的欲望也很强烈。所以这时候让学生先进行猜测是很有必要的,通过验证证明绝大多数同学的猜测是正确的,这样学生的研究成果被认可使学生会有一种成就感,从而也更增强了学生学习数学的信心。】

生反馈:

方法一:1000÷5=200(棵)

方法二:1000÷5=200(棵)200+1=201(棵)

师:到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000米,数一数,是不是就能知道到底谁的答案是正确的了呢?我们用这条线段表示1000米,先在这儿种上一棵,然后隔5米再种一棵,再隔5米再种一棵,再隔5米再种一棵,照这样一棵一棵的种下去…

师:大家看,已经种了多少米?(40米)这么长时间才种了40米,一共要种多少米?(1000米)要一棵一棵一棵一直种到1000米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)

【设计意图:通过创设植树的现实问题情境,提出“共需多少棵树苗的问题”。学生在解答的过程中出现了几种不同的答案,到底哪种答案对呢?引导学生通过画图实际种一种去检验。通过模拟种学生体验到一棵一棵种到1000米太麻烦了,于是老师介绍研究复杂问题的方法:遇到复杂问题想简单的,从简单问题入手去研究。(说明:为了使学生对复杂问题简单化的思想体验得更深刻,教材原题是在100米的小路的一侧植树我们将100米改为了1000米。)】

师:刘老师也有同感,一棵一棵种到1000米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?

师:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000米的路太长了,我们可以先在短距离的路上种一种,看一看。(板书:从简单入手)大家想不想用这种方法试一试?

师:“从简单入手”也是解决问题的一种策略。“1000米”数据比较大,比较复杂,你想从简单的想起,那么你想把它先看成多少?

师:大家想的都不错,那么我们就从15米想起吧!现在我们把这条15米长的路用一条线段表示,每隔5米栽一棵树,有几种植树方案呢?请你用自己喜欢的图案表示树,在线段图中设计出各种不同的植树方案,并说明设计理由?然后在小组内交流。

【设计意图:创设问题情境,放手让学生想一想、画一画、说一说,既满足了学生的表现欲望,又培养了学生自主探索、小组合作的意识,充分调动学生学习的积极性,把学习的主动权交给了学生。教学形式上,重视学生的独立探索和合作交流的有机结合,课堂中让学生根据自己的体验,用自己的思维方式去探究,去发现,去再创造,使每个学生都有一块属于自己思维的开拓区域。从学生已有的生活经验出发,让学生自由设计,然后引导学生自主探索、合作交流,得出“两端要栽:棵数=间隔数+1”,体现了教学方法的开放性。】

(生活动,教师搜集方案,在展示台上展现)

1.师:现在我们一起来研究同学们设计的方案。

(出示四种方案的线段图)

师:四种方案都符合设计的要求,谁能说说它们不同的地方在哪里?

师:请你具体地说一说?

师:这样就把树与路,怎么样?

师:很好,用一一对应的思想研究植树方案,第二种呢?

2.师:同学们真聪明,找到了这几种方案的不同之处。师:同学们真聪明,找到了这几种方案的不同之处,那它们之间有没什么相同的'地方呢?

师:每两棵树之间的距离5米就叫做“间距”。(板书:间距)

师:谁来指一指,数一数,第一种方案有几个“间距”?

师:有3个间距,我们就说它的“间隔数”是3。(板书:间隔数)

3.师:观察这三种方案,你发现棵数和间隔数之间有什么关系?

⑴师:两端都种的情况,你们是怎么发现棵数比间隔数多1的呢?

师:有没有其他办法?

生:一棵树对应一个间隔,一棵树对应一个间隔,最后会多1棵树。

师:刚才同学们用的是“一一对应”的数学思想来解决问题。

⑵师:只种一端的这种方案,怎么用一一对应的思想解决棵数和间隔数的关系?

⑶师:两端都不种时为什么棵数比间隔数少1呢?

㈡探究两端都种的情况

师:今天由于时间关系,我们先研究两端都种的情况。那么这种情况,间隔数和棵树有什么关系呢?

(师板书:棵数=间隔数+1)

师:刚才我们从简单的想起,知道路长15米,间距是5米,你们能不能用计算的方法,求出棵数呢?独立思考,试着算一算。

师:15米要准备4棵,那么1000米的路,两端都种要准备多少棵树?你会解决吗?试试看。(课件加上“两端都种”)

三、课堂小结

师:今天这节课你感受最深的是什么?

师:刘老师也找了些生活中的“植树问题”。如:上楼梯,锯木头,钟声等。(课件展示)你还能想出生活中的哪些地方用到“植树问题”吗?

师:“植树问题”在生活中应用比较广泛,下节课我们继续学习。

【设计意图:使学生感受到数学知识源于生活,用于生活,数学就在我们身边。从而使学生深刻感受到数学的应用价值,激发了学生学习数学的兴趣。】

设计思路

在本节课里,根据课程标准的精神,学习的主要任务定位在“能将植树问题推广到生活中的其他问题中,学会通过画线段图来分析理解题意”。本节课的教学,有以下思考:

一、挖掘教材内容,发展学生的应用意识

现在的数学教材内容具有一定的抽象性,呈现内容的方式是单一的、静态的。因此教师要认真钻研和熟悉教材,把蕴涵在教材中的那些可以让学生开展探究学习的资源挖掘出来,精心设计探究活动。为学生提供合适的、开放的探究学习材料,让学生进入一个自由选择、自主发现的学习活动平台。

二、重视数学思想与方法的渗透

学生在经历“问题情境-探究新知-建立模型-灵活运用”这样的知识建构过程中,力求参与面“广”,充分利用小组合作学习形式,

篇11:植树问题教学设计

【教材分析】

本册的“数学广角”主要是渗透有关植树问题的方法,通过现实生活中的一些常见的实际问题,让学生从中发现一些规律,抽取出其中的数学模型,然后再用这些规律来解决生活中的一些简单实际问题。

在本节课里,学生第一次接触到“植树问题”。解决植树问题的思想方法是实际生活中应用比较广泛的“复杂问题简单化”的数学方法。让学生能够理解植树问题中两端都栽的情况下数量之间的关系,并能解决生活中的一些简单实际问题。教学中,要引导学生通过观察、猜测、实验、推理等活动,初步体会植树问题的数学思想方法,感受数学的魅力。同时让学生学习应用植树问题的思想方法解决一些简单的实际问题,培养学生观察、分析及推理的能力,培养他们探索数学问题的兴趣和发现、欣赏数学美的意识。

【学情分析】

“植树问题”原本属于经典的奥数教学内容,新课程教材把它放到了 4 年级下册的 “ 数学广角 ” 中让所有的学生学习,说明这一教学内容本身具有很高的数学思维含量和很强的探究空间,既需要教师本身的有效引领,也需要学生的自主探究。从学生的思维特点看, 3 、4 年级的学生仍以形象思维为主,但抽象逻辑思维有了初步的发展,具备了一定的分析综合、抽象概括、归类梳理的数学活动经验。教学时可以从实际的问题入手,引导学生在分析、思考问题的过程中,逐步发现隐含于不同情形中的规律,经历抽取出数学模型的过程,体验数学思想方法在解决问题中的应用。

【教学目标】

1. 通过探究发现一条线段上两端都植树问题的规律;

2. 使学生经历和体验 “ 复杂问题简单化 ” 的解题策略和方法;

3. 让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力 。

【重点难点】

在探究活动中发现规律,抽取数学模型,并能够用发现的规律来解决生活中的一些简单实际问题。通过教学让学生理解 “ 两端都种 ” 情况下棵数和间隔数之间的规律,并利用规律来解决生活中的实际问题。

【 教学策略 】

采用自主探究式学习模式,即学生利用学具尝试动手“ 种树” ——探究发现规律——应用规律实践,通过有序的操作、思考、实践等活动,使学生的所想、所悟与直观形象结合,经历知识的探究过程,渗透数学学习方法,深刻体会到解决植树问题的思想方法内涵。

【教学过程】

一、课前交流,创设情境

(播放树木图片)

1. 同学们,看到了什么?有什么感受?

2. 刚刚我们仿佛走进了绿色的世界,真是让人陶醉!这都是植树造林带给我们的好处,上到国家领导人,下到中小学生,都经常参加植树活动(课件:图片),其实,植树中还有很多有趣的数学问题,这节课,我们就一起来研究“植树问题”。(板书课题:植树问题)

二、共同探究,发现规律

1. 绿化小学四年级的同学在植树中就遇到了一些问题,我们先来看看一班的(课件 出示:小路全长100 米,现要在一边种一行树,每隔5 米种一棵(两端都种)。一共需要多少棵树苗? )

(1 )理解信息

师:你认为哪些信息重要(关键词刷红)

师:你怎样理解“两端都种”和“ 每隔5 米 ”

师:两棵树之间的空,我们也叫做间隔(课件),你和我之间有没有间隔,有几个?请你起立,咱们三个之间有几个间隔?

(2 )引发猜想。

师:现在大家就试着做一做吧!

(生试做,指名板演)

师:我们请这几位同学分别说说他们是怎么想的

师:这几种做法的相同点是什么?不同点是什么?

师:100 ÷5 得到的20 到底求的是间隔数还是棵树呢?像这种两端种树的问题,棵树和间隔数之间究竟有什么关系呢?(课件出示)我们进行一次模拟植树活动怎么样?

(3 )实验探究

师:可是身边没有树怎么办呢

(用笔、用火柴等)

师:你们真的都很有创意,遇到难解决的问题时,都能想到用身边简单的事物做例子来研究,值得表扬,请看活动要求(出示:活动要求:请选择自己喜欢的方法动手试一试,也可以和同伴们共同研究,思考、交流:你把什么当成了树?种了几棵?有几个间隔?发现棵数和间隔数之间有什么关系?),谁来读读(学生读要求),明确要求了吗?开始吧!

(小组合作,教师巡视,找出典型验证方法)

(4 )发现规律

师:看来,大家都研究的差不多了,谁愿意和大家交流一下这几个问题?(边汇报边板演棵数和间隔数)

师:同学们,我们来看这组实验数据,谁能用一句话概括你的发现

师:刚刚我们通过这几种不同的实验活动,都得到了一个共同的结论,就是两端种树时,棵数比间隔数多1 ,用关系式表示是——棵数等于——间隔数+1 (贴图并板书),间隔数等于——(棵数-1 ),10 个间隔几棵树?100 个间隔几棵树?100 棵树有几个间隔呢?

师:那为什么棵数会比间隔数多1 呢

师小结:其实这几位同学用到的是数学中很重要的一种思想,“一一对应”(板书)我们来看,(指板书)一棵树,后面对应一个间隔,一棵树,后面对应一个间隔,最后一棵树后面没有对应的间隔(画弧线),所以,不论有几个间隔,棵数总比间隔数多一。

(5 )应用规律

师:应用这个规律,我们来看哪个答案是正确的(第一个)

师:先用——100 ÷5=20 ,求出——间隔数,再用——20+1=21 ,求出——棵数(相应板书)那做错的同学错在哪了呢?

(6 )梳理方法。

师小结:问题解决了,现在让我们一起梳理一下刚才的学习过程,首先对问题进行大胆地——猜想,再通过——实验,对猜想进行——验证,然后得出科学的——结论,最后应用结论去解决问题(板书:猜想——实验——验证——结论——应用)。这也为我们以后研究问题提供了一些好的方法和思路。你们能用刚刚学到的知识帮助二班和三班解决问题吗?

三、逆向练习,加深理解

出示:

1. 四年二班在一条直路的一边植树,计划每隔5 米种一棵,需要种21 棵树( 两端都种 ) ,这条直路长多少米?

2. 四年三班在全长100 米的'直路一边植树,计划等距离种21 棵树( 两端都种) ,相邻两棵树间隔多少米?

自己读读题,然后解答

(逐个讲评)

四、联系生活,拓展提升

师:刚刚我们解决了几个关于植树的问题,其实生活中还有很多与植树问题类似的现象,想一想,有哪些?

(锯木头 摆花(东西) 站队上楼梯安路灯等)

师评价:看来你们都有一双善于发现的眼睛,老师也找到了一些,请看(课件出示图片,说清与植树问题的联系)

师:联系我们都找到了,你们想实际解决一下吗

出示:

注意:请自由选择两道题解决,有余力的同学也可以全做。遇到问题可以举例子试试,也可以和同伴共同解决。

1. 安装路灯

在全长 米的街道两旁安装路灯(两端都装),每隔50 米安装一座。一共安装多少座路灯?

2. 排队问题

早操时排队,每隔2 米排一人,一排有22 人。这排队伍是多少米?

3. 上楼梯问题

我们班教室在三楼,我们每天从一层到三层一共要走48 个台阶,每层有多少个台阶?

4. 敲钟问题广场上的大钟5 时敲响5 下,8 秒敲完。12 时敲12 下,需要多长时间?

师:先读读注意事项,然后解答

(生解答,指名板演)

师:谁来说说你解决的是什么问题?(自选汇报)

师总结:同学们,通过本节课的学习,我们能够解决直路上两端种树以及与之相类似的一些问题,可是四班和五班却遇到了两种不同的情况(课件),他们会遇到什么问题呢?这两种情况下,棵数和间隔数之间又有什么关系呢? 我们下节课再来研究!

【板书设计】

篇12:植树问题教学设计

一、教学内容

教科书P117例1

二、教学目标

1、利用熟悉的生活情境,通过动手操作等实践活动,理解并掌握“两端都要种”的植树问题中间隔数与植树棵数之间的规律。

2、在合作探究中解决问题,建构数学模型,感受数学的简化思想和应用价值。

3、渗透数形结合的思想,培养学生借助线段图来解决问题的意识。

三、教学重点、难点

1、重点:通过探究,发现两端都栽的情况中“棵数=间隔数+1”

2、难点:利用规律来解决生活中的实际问题。

四、教学准备

小棒、课件、练习本、表格

五、教学过程

(一)创设情境,引入学习

1、每个人都有一双灵巧的小手,知道吗,在你的手上,还藏着数学知识呢?请伸出左手找找看,你找到了吗?

(预设  生:有5根手指  生:有4个空)

像刚才同学们所提到的2根手指间的空格,在数学上我们叫做间隔(板书间隔)

2、生活中很多地方也存在着间隔,你能找到吗?

(预设  生1:树木之间有间隔  生2:队伍之间  生3:栏杆之间也有)指名3人

3、老师也收集了一些(播放课件)

过渡:看来与间隔有关的事物太多了,很有研究的必要,今天这节课我们就来研究与间隔有关的植树问题。(板书课题)

(二)合作探究“两端都栽”的规律

1、①课件出示  请看题“学校准备在一条长20米的小路一旁栽树,每隔5米栽一棵(两端都栽),一共需要多少棵树苗?

谁能响亮的读题?

②从题中你了解到了哪些数学信息?

预设  生1这条小路总长20米  生2每隔5米种一棵(5米就是我们所说的间隔长) 生3:两端都栽(什么是两端都栽?2人说)(板书两端都栽)  生4:一旁

③能试着列列算式来解决吗?把你的想法列在练习本上。(指名板演)

(预设  生1:20÷5+2=6(棵)  生2:20÷5+1=5(棵))

还有不一样的吗?也上来写写

说一说你的想法

④我发现你们虽然意见不统一,但是有一步却是相同的,找到了吗?20÷5是什么意思?

指名2人说(板书总长÷间隔长=间隔数)齐读1次

2、①到底哪种答案是正确的,你有什么方法来验证一下,同桌一起讨论一下。

(预设  生1:用手掌中的间隔现象来说明  生2:用小棒来模拟种一种

生3:画线段图来验证一下)

方法有很多,但是画线段图是最常见、最一般的方法。

②你打算怎么画,能介绍一下吗?

生介绍,师板画

介绍,我们可以取任意长代表5米,这样5米5米地画,一直画到20米,(出示课件)几个间隔,几棵小树?(4个间隔  5棵数)

通过线段图,我们清楚的看出正确答案应该是20÷5+1=5(棵))

3、①如果老师将总长和间隔长进行变换,你能自己迅速画出线段图得出间隔数和棵数吗?

两端都栽的情况下

同桌合作完成表格第2、3两行。

②展示1个学生的作品,课件出示

观察大屏幕上的数据,想一想在两端都栽的情况下,棵数与间隔数存在怎样的规律?

指名3人说(在说时强调条件是两端都栽的情况下)  (板书 棵数=间隔数+1  间隔数=棵数-1)  加上条件再齐读一次

4、验证规律

①在两端都栽的情况下,是不是棵数与间隔数都存在这种规律呢?想自己再来验证一下吗?②请在表格的剩余两行自设总长和间隔长画一画线段图(注意你所设制的总长必须要能被间隔长整除)想一想怎样才能提高速度,间隔数太多了好不好?

③同桌再次合作,教师巡视

④汇报,教师记录结果

⑤通过这些数据,你有什么要说的吗?为什么棵数总比间隔数多1?

700个间隔,几棵树?  1000棵数几个间隔?

(三)练习生活,拓展应用

生活中有很多类似问题也能用植树问题的规律来解决,比如装路灯,设车站,做楼梯,锯木头等等,一起去看看吧!

1、在一条全长400米的街道两旁挂灯笼,每隔8米挂一个(两端都挂),一共需要多少个灯笼?女生读题  学生独立列式,说一说你的理解

2、刘翔一共要跨10个栏,每两个栏之间的间隔长是10米,求从第一个栏到最后一个栏一共有多长?男生读题  刚才求的是棵数,现在求的是(总长)要求总长必须知道什么条件独立列式,汇报结果,说说理解。

3、你看过钟表吗?

你听——当当,这是几时;当当当这是几时,有几个间隔?

在钟声里也有数学问题,一起去看看吧!

出示广场上的大钟5时敲响5下,敲响第一下到第五下用了8秒,12时敲响了12下,需要多长时间?

(四)课堂小结,留下悬念

1、这节课同学们都表现得非常认真,积极,想一想在这节课上你有什么收获?

2、收获那么多,老师真为你感到高兴,其实植树问题中还有很多数学问题,你比如说一头栽一头不栽,两头都不栽,在封闭图形上栽等等,他们又存在怎样的规律?就让我们带着对这些问题的思考迎接下节课的学习吧!

篇13:植树问题教学设计

教学内容:人教版义务教育课程标准实验教材四年级(下册)第117---118 页例1 。

教学目标:

1 . 通过探究发现一条线段上两端要种和两端不种两种不同情况植树问题 的规律。

2 . 使学生经历和体验“复杂问题简单化”的解题策略和方法。

3 . 让学生感受数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,培养学生的应用意识和解决实际问题的能力。

一、谈话引入,明确课题

同学们,很高兴认识你们,握握手吧。其实我们的双手不仅能传达友谊,而且还与数学有着紧密的联系呢。(伸开五指)这是几?生:5

师:每个手指之间还有什么?生:空……

师:在数学上,也叫间隔。五个手指几个空?4 个呢?三个呢?

师:今天我们就来学习与间隔有关的植树问题。

二、引导探究,发现“两端要种”的规律

1 . 创设情境,提出问题。

①课件出示图片。

介绍:这是新修的一条公路。公路中间有一条绿化带,现在要在绿化带中种一行树,怎么种呢?

出示题目:这条公路全长1000 米,每隔5 米种一棵树(两端要种)。一共需要多少棵树苗?

②理解题意。

a. 指名读题,从题中你了解到了哪些信息?

b. 理解“两端”是什么意思?

指名说一说,然后师实物演示:指一指哪里是这根小棒的两端?

说明:如果把这根小棒看作是这条绿化带,在绿化带的两端要种就是在绿化带的两头要种。

③算一算,一共需要多少棵树苗?

④反馈答案。

方法一:1000 ÷5=200 (棵)

方法二:1000 ÷5=200 (棵)  200 +2=202 (棵)

方法三:1000 ÷5=200 (棵)  200 +1=201 (棵)

师:现在出现了三种答案,而且每种答案都有不少的支持者,到底哪种答案是正确的呢?咱们可不可以画图模拟实际种一种?如果从图上一棵一棵种到1000 米,数一数,是不是就能知道到底谁的答案是正确的了呢?

2. 简单验证,发现规律。

①画图实际种一种。

课件演示:我们用这条线段表示这条绿化带。“两端要种”,我们从绿化带的这头开始,先在头儿上种上一棵,然后隔5 米再种一棵,再隔5 米再种一棵,再隔5 米再种一棵,照这样一棵一棵的种下去……

师:大家看,已经种了多少米?(45 米)这么长时间才种了45 米,一共要种多少米?(1000 米)要一棵一棵一棵一直种到1000 米呀?!同学们,你有什么想法?(太累了,太麻烦了,太浪费时间了)

师:老师也有同感,一棵一棵种到1000 米确实太麻烦了。其实,像这种比较复杂的问题,在数学上还有一种更好的研究方法,大家想知道吗?这种方法可不是一般的方法。大家听好喽,这种方法就是:遇到比较复杂的问题先想简单的,从简单的问题入手来研究。比如:1000 米的路太长了,我们可以先在短距离的路上种一种,看一看。大家想不想用这种方法试一试?

②画一画,简单验证,发现规律。

a. 先种15 米,还是每隔5 米种一棵,画图种一种,看种了多少棵?比一比,看谁画得快种的好。(板书:3 段 4 棵)

b. 跟上面一样,再种25 米看一看,这次你又分了几段,种了几棵?(板书:5 段 6 棵)

c. 任意选择一段距离再种一种,看这次你又分了几段,种了几棵?从中你发现了什么?

(板书: 2 段 3 棵;7 段 8 棵;10 段 11 棵。)

d. 你发现了什么?

小结:你们真了不起,发现了植树问题中非常重要的一个规律,那就是:

(板书:两端要种:棵树= 段数+1 )

③应用规律,解决问题。

a. 课件出示:前面例题

问:应用这个规律,前面这个问题,能不能解决了?那个答案是正确的?

1000 ÷5=200 这里的200 指什么?

200 +1=201 为什么还要+1 ?

师:这个“秘方”好不好?

通过简单的例子,发现了规律,应用这个规律解决了这个复杂的问题。以后,再遇到“两端要种”求棵树,知道该怎么做了吗?

b. 解决实际问题

运动会上,在笔直的跑道的一侧插彩旗,每隔10 米插一面(两端要插)。这条跑道长100 米,一共要插多少面彩旗?( 学生独立完成。)

问:这道题是不是应用植树问题的规律解决的?

师:看来,应用植树问题的规律,不仅仅能解决植树的问题,生活中很多类似的现象也能用植树问题的规律来解决。你还知道生活中那些问题也是这样的。

三、回归生活,实际应用

1 . 一根木头长8 米,每2 米锯一段。一共要锯几次?(学生独立完成。)

8 ÷2=4 (段)

4 —1=3 (次)

问:为什么要—1 ?这相当于今天学习的植树问题中的那种情况?

2 . 我们身边类似的数学问题。

①看,这一列共有几个同学?(4 个)如果每相邻两个同学的距离是1 米,从第1 个同学到最后一个同学的距离是多少米?如果这一列共有10 个同学呢?100 个同学呢?

②这一列还是4 个同学,如果每相邻两个同学之间的距离是2 米,从第一个同学到最后一个同学的距离是多少米呢?

3 .在一条路的一侧种树,每隔6 米种一棵,一共种了41 棵树。从第1 棵树到最后一棵树的距离是多少米?

五、全课总结

通过今天的学习,你有哪些收获?

师:通过今天的学习,我们不仅发现了植树问题中两端要种和两端不种的规律,而且还学习了一种研究问题的方法,那就是遇到复杂问题先想简单的。植树中的学问还有很多,有兴趣的同学,课下可以查阅有关的资料继续研究。

篇14:《植树问题》教学设计

“植树问题”是人教版四年级下册“数学广角”的内容,教材将植树问题分为几个层次:两端都栽、只栽一端、两端都不栽、环形情况以及方阵问题等。其侧重点是:在解决植树问题的过程中,向学生渗透一种在数学学习上、研究问题上都很重要的数学思想方法――化归思想,同时使学生感悟到应用数学模型解题所带来的便利。

一、教学目标:

1、知识与技能目标:通过动手实践,合作探究,让学生在做数学的过程中经历由现实问题到数学建模,理解并掌握植树棵数与间隔数之间的关系。

2、过程与方法目标:通过学生自主实验、探究、交流、发现规律,培养学生动手操作、合作交流的能力,以及针对不同问题的特点灵活解决的能力。

3、情感与态度目标:让学生在探索、建模、用模的过程中体验到学习成功的喜悦和认识归纳规律对后续学习的重要性,培养学生探索归纳规律的意识,体会解决植树问题的思想方法。

二、教学重点:理解植树问题棵树与间隔数之间的关系。

教学难点:会应用植树问题的模型灵活解决一些相关的实际问题。

三、教具准备:多媒体课件和未完成的表格。

四、教学过程:

课前准备:(多媒体放映牛顿和苹果的故事)

师:科学家的故事给你什么启示?(勤于观察,善于思考,大胆猜想…)

谈话引入:说到不如做到,让我们从现在开始,看谁的观察最仔细,看谁的思考最积极,看谁这节课也能从平常的事物中发现规律,准备好了吗?

(一)、提出问题、引发思考、探究规律。

1、手引发的思考。

师:伸出你的左手,张开手指,用数学的眼光看一看,你发现了什么?

师:大家都有一双锐利的数学眼睛,发现手指与间隔之间也有数学。其实在生活中那些司空见惯的现象,只要用心观察、思考也能发现他们的数学奥秘。这节课,我们将深入研究类似手指与间隔这样的数学问题。

2、整体感知、确定研究方向。

课件出示:在15米长的小路一边种树,每隔5米种一棵。可能有几种情况?

展示学生的猜想:(两端都种,共4棵)(只种一端,3棵)(两端不种,只2棵)

理解:“间隔”、“间隔数”、“棵数”。

(二)、小组合作,探究规律

1、提出问题。

课件:在全长1000米的孟州市大定路的一边植树,每隔10米栽一棵树(两端都栽),一共需要多少棵树苗?

学生的猜测可能有不同的结果:1000;1001;1002)

2、自主探究。

棵数和间隔数到底之间有什么关系呢?让学生大胆地猜想,并用图示的方法验证。

课件显示:隔10米种一棵,再隔10米种一棵……,一直画到1000米!学生会感觉:这样一棵一间隔画下去,方法是可以的,但太麻烦了,又浪费时间。

引导学生:要研究棵数和间隔数之间有什么关系,有更简单的方法吗?

让学生思考、交流,尝试从简单入手,用“把大数变小数”的方法进行研究,渗透“化繁为简”的数学思想。

3、发现规律。

学生开始动手画图、填表、比较分析,然后展示他们的研究结果,发现在小数据中两端都种的情况下,都有“棵数比间隔数多1”的规律。

师:“棵数比间隔数多1”的规律是同学们用较小的数据研究出来的,如果数据增大,这个规律还成立吗?

课件动态演示:一个间隔对应一棵,这样一直对应下去, 1000个间隔就有1000棵,种完了吗?

师:如果这条路变得很长很长、无限长,两端都种还有这样的规律吗?让学生从中体会到,不管数字多大,用“一一对应”的方法,最后还要补上一棵才能达到两端都种的结果。这个环节,潜移默化地渗透“极限”的思想。

4、总结归纳。

归纳“化繁为简”的解题策略。让学生体会到研究问题可以从简单入手,将困难的变为容易的,将复杂的变为简单的,用这样的方法,可以有效的解决问题。把抽象的数学化归思想渗透在教学中,让学生在“润物细无声”中体验到数学思想方法的价值,提高思维的素质。

5、总结规律。

师:你们能用一个式子把规律表示出来吗?

【板书】间隔数+1=棵数 棵数-1=间隔数

6、联系生活

在我们生活中存在着很多类似植树问题的现象,你发现了吗?

让学生通过举例,体会到植树问题在生活中的广泛应用。同时让学生清楚地认识到路灯排列、排队等生活现象都与“植树问题”有着相同的数学结构,也给这种数学思想以充分的建模。

(三)、点击生活

①(求间隔数)判断:元宵节,中华大街一侧从头到尾一共挂了200个大红灯笼,如果在每两个灯笼间挂一个中国结,需要201个中国结( )

②(求间隔长)公共汽车行驶路线全长9千米,从起点站到终点站共有10个站,相邻两站的距离约是多少千米?

③(求棵数)老师登古塔,每层有11个台阶,从一层开始一共走了55个台阶,龙老师到了第几层?

④ (求全长)塔楼上敲钟,从第一敲开始,每隔4秒敲一次,到第5敲时,一共间隔了几秒钟?

(四)、拓展延伸。

(课件出示世界著名数学问题)

师:数学史上有个“20棵树”的植树问题,几个世纪以来一直都引起科学家的研究兴趣。这就是:‘20棵树,若每行四棵,问怎样种植,才能使行数更多?

早在十六世纪,古希腊等国完成了十六行的排列。(出示图1)

十八世纪,美国数学大师山姆完成了十八行图谱。(出示图2)

进入二十世纪,数学爱好者绘制出了二十行图谱,创造了新纪录并保持至今。(出示图3)

(结语)今天进入21世纪,20棵树,每行4棵,还能有更新的进展吗?数学界正翘首以待!期待着同学们大胆探索、积极思考,相信你们一定会有更大的收获!

篇15:植树问题教学设计

【教学内容】

《义务教育课程标准实验教科书・数学》(人教版)五年级上册第106页例1,处理练习二十四第2、5题及有关的做一做。

【课程标准】

《植树问题》属于“综合应用”领域中的内容。课程标准的要求是:“通过数学活动了解数学与生活的广泛联系,学会综合运用所学的知识和方法解决简单的实际问题,加深对所学知识的理解,获得运用数学解决问题的思考方法,并能与他人进行合作交流。”

【学情与教材分析】

就本套教材的知识体系来说,在实际生活中,学生都经历过植树活动、上楼梯等“植树问题”的原型,只是对于很好的理解这个数学模型还需很多的练习。本节课的教学充分利用学生熟悉的生活情境,让他们在解决问题的过程中发现规律,找到解决问题的有效方法,经历分析、思考问题的过程,探究并掌握最基本的植树规律――“两端都栽”的“植树问题”中的规律,同时也为后面学习“两端都栽”和“封闭图形植树”等不同情形的“植树问题”打基础。

【学习目标】

1、学生利用熟悉的生活情境,通过动手操作等实践活动,理解并掌握“两端都栽”的“植树问题”中间隔数与植树棵数之间的规律。

2、学生通过合作探究、解决问题,建构数学模型,感受数学的简化思想和应用价值。

3、学生通过画线段图,借助图形解决问题的能力得到提高,感受数形结合的思想。

【教学重点】

发现非封闭图形中植树的棵数与间隔数之间的关系,并用发现的规律解决实际问题。

【教学准备】多媒体课件。

【评价设计】

1、交流式评价:通过课堂上学生回答问题情况,师生交流情况和生生对话交流情况检测学习目标1的达成;

2、表现性评价:通过小组合作操作过程、讨论表现、学生问题汇报情况检测目标2的达成;

3、选择性反应评价:通过课堂上提问,课后拓展练习检测植树问题的掌握情况,检测学习目标3的达成。

【学习过程】

一、生活引入、认识间隔。

1、生活中的植树问题

(1)猜谜语

两棵小树十个叉,不长叶子不开花。能写会算还会画,天天干活不说话。

谈话:每位同学都有一双灵巧的小手,它不但会写字、画画、做事,而且在它里面还藏着有趣的数学问题,大家想不想一起去看一看?请举起你的左手。

师:现在请每位同学将五指张开,数一数,张开后有几个空隙?

师:在数学上,我们把这个空隙叫做“间隔”。刚才,我们把五指张开,有4个空隙,也就是有4个间隔。

师:5个手指之间有4个间隔,那么4个手指之间有几个间隔呢?3个手指之间呢?

(2)人民大会堂前面的柱子和间隔数。

师:通过刚才我们找手指数和间隔数,以及找柱子数和间隔数,你发现了什么?谁来说一说。(手指数比间隔数多1或间隔数比手指数少1)

2、引入植树问题。

谈话:数学无处不在。通过刚才的观察与思考,你能从中发现规律,继而运用规律解决生活中一些简单而又实际的问题吗?

下面,让我们一起进入今天的学习有趣的植树问题。(板书课题)

二、自主探究、发现规律。

1、引出需要,提出设计要求。

谈话:学校准备对校园作进一步绿化,打算聘请校园设计师一名。要求设计植树方案一份,择优录取。大家愿意尝试一下吗?我们先来看看学校的设计内容吧!

课件出示:

招聘启事

学校将对校园进一步绿化,特聘请校园设计师一名。要求设计植树方案一份,择优录取。

设计内容:在全长20米的小路一边植树,请按照每隔5米栽一棵的要求设计一份植树方案,并说明理由。(可用线段图表示)

外国语小学

2014年3月7日

学生动手尝试,汇报“两端都栽”,“两端都不栽”和“一端栽,一端不栽”植树方案。

2、根据植树方式,探究棵数与间隔数之间的关系。

(1)根据学生汇报,课件演示各种方案,强调一边植树,两端都栽的含义,并引出本节课要学习的内容。

师:今天这些课我们着重来研究“两端都栽”的植树问题。(板书)

(2)课件出示引例:在全长20米的小路的一边植树,每隔5米栽一棵(两端都栽)。一共需要多少棵树苗?

师提问:我们在了解题意的情况下,解决的过程能直接用除法“20÷5=4”一步到位解答这个关于“两端都要栽”的植树问题吗?让我们现在就来验证一下吧!

师出示植树示意图。并提问:直接用除法“20÷5=4”能一步到位解答这个关于“两端都要栽”的植树问题吗?

师:有没有同学可以用简洁明了的方法帮助大家理解呢?

(3)画线段图来帮助理解:我们用一条线段来代表20米长的小路,再用几个点或短竖线来代表小树苗。

介绍线段图并指出线段图可以很好地帮助我们思考。接着提问:  “20÷5=4”得到的只是一个什么样的数?植树的“棵数”要在“20÷5=4”的基础上怎么办?

3、利用线段图,探究规律。

刚才我们研究了每隔5米栽一棵的情况,如果我们换一下间隔数,是不是还有这样的规律呢,请你用画线段图的方法来验证一下。

学生小组合作,并汇报植树问题研究报告表。

线路长

间隔长(米)

间隔数(个)

棵数(棵)

20米

5

2

5

3

4、总结规律。

师:通过刚才的研究活动,当“在一条线路的一侧,两端都要栽”时,植树的“棵数”与“间隔数”有什么关系?(师根据学生回答板书)

间隔数=线路长÷间隔长

棵数=间隔数+1

5、列式解答引例和例1。

三、联系生活,建构模型。

提问:在“植树问题”中,一定要是“树”吗?除了“树”,还能换成别的事物吗?谁能举几个这样的例子?

学生自由说生活中的例子。

反馈后小结:通过刚才的发言,我们知道植树问题普遍地存在于我们的生活当中。手指的个数、楼层数、队伍中的人数,教室的灯和课桌、马路边的路灯、花盆等就相当于我们上面提到的树的棵数,而手指的间隔、人与人之间的距离等等就相当于间隔数,所以,类似于两端都种的这种植树问题的数量间的关系问题都可以用“棵数=间隔数+1”这个关系式来计算。

四、应用模型,解决实际。

1、选择

(1)16名小学生排成一列纵队,每两名小学生之间相距1米,这列队伍长( )米。

A、17 B、16 C、15 D、14

(2)校运会的运动场上,1条跑道有2条石灰线,4条跑道有( )条石灰线。

A、8 B、7 C、6 D、5

2、5路公共汽车行驶路线全长12km相邻两站之间的路程都是1km。一共设有多少个车站?

3、广场上的大钟5时敲响5下,8秒钟敲完。12时敲响12下,敲完需要多长时间?

4、在一条全长2km的街道两旁安装路灯(两端也要安装),每隔50m安一盏。一共要安装多少盏路灯?

5、教室位于教学楼五楼的四(1)班的同学们,准备从教室下楼做广播操。已知这栋教学楼每层台阶都是22级,同学们一共下了多少级台阶?

五、总结收获。

今天,我们一起探讨学习了植树问题中两端都要栽的情况,谈谈你有哪些收获?

师:这节课我们学习了植树问题,并能利用植树问题解决生活中类似的实际问题,解答时要重点分清栽树的棵数与间隔数间的关系,后面还有一些假如只栽一端或两端都不栽,那又会是什么情形呢?希望大家开动脑筋,灵活处理,在课下去探究一下吧!

六、儿歌

小树苗,栽一栽,

两端都栽问题来,

间隔数多1是棵数,

棵数少1是间隔数,

怎样求出间隔数?

全长除以间隔长度。

[植树问题教学设计]

显示全文