matlab代码在matlab上求解。首先,由于matlab的线性规划函数默认求的是目标函数的最小值,而我们需要让目标函数达到最大,所以需要在目标函数的系数前都加上负号,最后将算得的值再次取相反数,就可得到最大值了。目标函数的系数矩阵实现如下:f=[-1.03;-1.0225;-1.016;-1.009;-1.005;-1.002];
接下来,转化线性约束的系数矩阵和右端向量,如下:
A=[1,1,1,1,1,1];b=435000;在通常的投资决策模型中,通常约束条件会要求变量的最小值为零。然而,为了满足模型中每个变量必须遵守的特定倍数约束,我们对变量的上下限进行了必要的调整。这意味着每个变量不再被约束为从零开始,而是从符合倍数要求的最小整数值开始。同样地,这样,每个变量的定义范围都被精确地限定在其应该遵循的约束条件内。通过这种调整,我们确保了整数线性规划模型的解满足所有倍数约束条件,从而提供可行并符合实际情况的最优解。接下来是对变量范围调整的具体描述:lb=[50000,20000,10000,1000,500,10];ub=[400000,20000,10000,1000,500,435000];最后,我们调用intlinprog程序来解决这个整数线性规划问题。下面是模型求解的matlab过程:
我们得到结果,投资金额的分配分别为:180天:400000元,150天:20000元,120天:10000元,90天:4000元,60天:500元,30天:500元,最后得到的最大总收益为447649.5元。对于问题二,需要在原来的模型上对线性约束的右端向量进行修改。即添加每月的额外收入用于再投资。以下是对问题二的matlab求解:在完成了求解过程之后,我们通过细致的模型分析得出了考虑再投资的条件下,如何有效地分配我们的投资金额:在180天期限的投资中,我们分配投资额为550,000元;150天期限的投资中分配了40,000元;120天期限我们分配了10,000元;90天期限是4,000元;60天和30天期限,投资额则分别为500元。采用这样的分配策略,我们可以实现最大化的总收益,达到622,599.5元。在计算收益时,我们考虑的是整体回报,即本金加上通过投资所获得的利息。对于关心利润的投资者,我们可以从最大总收益中简单扣除本金,从而得到纯利息收益。这一数学模型不仅为我们提供了一个具体的投资配置方案,而且还揭示了在不同投资时限条件下,资金的再投资对最终收益的重要影响,强调了资金时间价值在投资决策过程中的核心地位。
七、模型检验首先,我们将所掌握的数据一一代入模型中,并根据变量受到的约束来改变A矩阵,要求变量要满足是规定的倍数,那么该问题的解就有有限个。我们可以从以下几个方面来对该模型做出检验:1.分支定界法。此方法用来求解整数线性规划,我们可以利用分支定界法在计算机上或是人工来对模型做出检验。2.Gomory割平面法。运筹学中也常用此方法来计算整数线性规划。我们可以人工对其做出检验。如果模型需要流入市场,那么该模型需要经过大量的数据进行实验,确保预测的偏差不会过大。我们将每一组进行测试的数据可以列出表格,先对数据减去均值除以标准差,然后在Excel里做描述性统计分析,若是满足正态分布3σ原则,我们可以认为模型的建立是良好的。(即偏离均值的范围要可控)由于数据有限,我们这里只对题目中的数据做出检验,经过检验,模型的建立是基本良好的。八、评估与分析8.1对比分析:将模型计算结果与现实中的结果做对比,或者和其他已建立模型的结果比较。我们知道,因为投资额是整数倍,所以我们可以枚举出有可能的最优投资方案,显然,模型预测的结果一定是这种计算结果的子集,我们验证得到,预测结果中的最大总收益正好是这个集合所对应的收益中的最大值,而预测的投资方案也包含在集合中,这说明模型的准确性良好。8.2可操作性分析:模型简洁易懂,能被非技术用户理解和实施。同时,所需计算资源量不大,模型效率良好。8.3成本效益分析:模型运行所产生的成本微乎其微。模型具有经济效益,值得在实际中应用。8.4模型的缺点:此模型如果面临投资额倍数约束的改变,需要手动调整线性约束条件,改变决策变量的上下界。这是因为在matlab线性规划的范畴内,不支持直接设置倍数约束,我们需要先把问题设置在整数线性规划内,然后通过限制变量的变化范围来达到相同的效果。这一点让该模型的灵活性受到了限制。8.5优化与改进:可以在模型中加入动态规划的方法让模型更灵活。在我们的投资组合选择问题中,可以将时间分割成多个阶段,每个阶段可以做出投资选择。随着时间的进行,新的资金流入及不同产品的期限结束,投资决策也需要随之调整。使用MATLAB的动态规划工具箱或者手动编写DP算法来求解问题。从最后一个时间节点往前逐个计算,对于每一个状态,找到能够带来最大收益的决策。通过这种反向迭代的方法,可以最终确定最初的最优投资策略。在完成了对投资组合问题的深入研究、模型的细致建立和严格检验之后,我们透过应用先进的数学规划和优化方法,如动态规划,尝试最大化预期收益。通过MATLAB工具,我们得以实现对模型的高效求解和分析。最终,本研究希望这个模型能够作为一个有益的工具,帮助投资者在复杂多变的金融环境中做出明智的决策,并为未来相关领域的研究打下坚实的基础。感谢您的耐心阅读。