前言
本文将从0到1讲解一个Spring Batch是如何搭建并运行起来的。
本教程将讲解从一个文本文件读取数据,然后写入MySQL。
什么是 Spring Batch
Spring Batch 作为 Spring 的子项目,是一款基于 Spring 的企业批处理框架。通过它可以构建出健壮的企业批处理应用。Spring Batch 不仅提供了统一的读写接口、丰富的任务处理方式、灵活的事务管理及并发处理,同时还支持日志、监控、任务重启与跳过等特性,大大简化了批处理应用开发,将开发人员从复杂的任务配置管理过程中解放出来,使他们可以更多地去关注核心的业务处理过程。
环境搭建
我是用的Intellij Idea,用gradle构建。
首先选择Gradle Project,然后选择Java。填上你的Group和Artifact名字。
最后再搜索你需要用的包,比如Batch是一定要的。另外,由于我写的Batch项目是使用JPA向MySQL插入数据,所以也添加了JPA和MySQL。其他可以根据自己需要添加。
点击Generate Project,一个项目就创建好了。
Build.gralde文件大概就长这个样子:
buildscript {
ext {
springBootVersion ='2.0.4.RELEASE'
}
repositories {
mavenCentral()
}
dependencies {
classpath("org.springframework.boot:spring-boot-gradle-plugin:${springBootVersion}")
}
}
apply plugin:'java'
apply plugin:'idea'
apply plugin:'org.springframework.boot'
apply plugin:'io.spring.dependency-management'
group='com.demo'
version ='0.0.1-SNAPSHOT'
sourceCompatibility=1.8
repositories{
mavenCentral()
}
dependencies {
compile('org.springframework.boot:spring-boot-starter-batch')
compile('org.springframework.boot:spring-boot-starter-jdbc')
compile("org.springframework.boot:spring-boot-starter-data-jpa")
compilegroup:'com.fasterxml.jackson.datatype', name:'jackson-datatype-joda', version:'2.9.4'
compilegroup:'org.jadira.usertype', name:'usertype.core', version:'6.0.1.GA'
compilegroup:'mysql', name:'mysql-connector-java', version:'6.0.6',
testCompile('org.springframework.boot:spring-boot-starter-test')
testCompile('org.springframework.batch:spring-batch-test')
}
Spring Batch 结构
网上有很多Spring Batch结构和原理的讲解,我就不详细阐述了,我这里只讲一下Spring Batch的一个基本层级结构。
首先,Spring Batch运行的基本单位是一个Job,一个Job就做一件批处理的事情。
一个Job包含很多Step,step就是每个job要执行的单个步骤。
如下图所示,Step里面,会有Tasklet,Tasklet是一个任务单元,它是属于可以重复利用的东西。
然后是Chunk,chunk就是数据块,你需要定义多大的数据量是一个chunk。
Chunk里面就是不断循环的一个流程,读数据,处理数据,然后写数据。Spring Batch会不断的循环这个流程,直到批处理数据完成。
构建Spring Batch
首先,我们需要一个全局的Configuration来配置所有的Job和一些全局配置。
代码如下:
@Configuration
@EnableAutoConfiguration
@EnableBatchProcessing(modular = true)
public class SpringBatchConfiguration {
@Bean
public ApplicationContextFactory firstJobContext() {
return new GenericApplicationContextFactory(FirstJobConfiguration.class);
}
@Bean
public ApplicationContextFactory secondJobContext() {
return new GenericApplicationContextFactory(SecondJobConfiguration.class);
}
}
@EnableBatchProcessing是打开Batch。如果要实现多Job的情况,需要把EnableBatchProcessing注解的modular设置为true,让每个Job使用自己的ApplicationConext。
比如上面代码的就创建了两个Job。
例子背景
本博客的例子是迁移数据,数据源是一个文本文件,数据量是上百万条,一行就是一条数据。然后我们通过Spring Batch帮我们把文本文件的数据全部迁移到MySQL数据库对应的表里面。
假设我们迁移的数据是Message,那么我们就需要提前创建一个叫Message的和数据库映射的数据类。
@Entity
@Table(name ="message")
public class Message {
@Id
@Column(name ="object_id", nullable = false)
private String objectId;
@Column(name ="content")
private String content;
@Column(name ="last_modified_time")
private LocalDateTime lastModifiedTime;
@Column(name ="created_time")
private LocalDateTime createdTime;
}
构建Job
首先我们需要一个关于这个Job的Configuration,它将在SpringBatchConfigration里面被加载。
@Configuration
@EnableAutoConfiguration
@EnableBatchProcessing(modular = true)
public class SpringBatchConfiguration {
@Bean
public ApplicationContextFactory messageMigrationJobContext() {
return new GenericApplicationContextFactory(MessageMigrationJobConfiguration.class);
}
}
下面的关于构建Job的代码都将写在这个MessageMigrationJobConfiguration里面。
public class MessageMigrationJobConfiguration{
}
我们先定义一个Job的Bean。
@Autowired
private JobBuilderFactory jobBuilderFactory;
@Bean
public Job messageMigrationJob(@Qualifier("messageMigrationStep") Step messageMigrationStep) {
return jobBuilderFactory.get("messageMigrationJob")
.start(messageMigrationStep)
.build();
}
jobBuilderFactory是注入进来的,get里面的就是job的名字。
这个job只有一个step。
Step
接下来就是创建Step。
@Autowired
private StepBuilderFactory stepBuilderFactory;
@Bean
public Step messageMigrationStep(@Qualifier("jsonMessageReader") FlatFileItemReader jsonMessageReader,
@Qualifier("messageItemWriter") JpaItemWriter messageItemWriter,
@Qualifier("errorWriter") Writer errorWriter) {
return stepBuilderFactory.get("messageMigrationStep")
.chunk(CHUNK_SIZE)
.reader(jsonMessageReader).faultTolerant().skip(JsonParseException.class).skipLimit(SKIP_LIMIT)
.listener(new MessageItemReadListener(errorWriter))
.writer(messageItemWriter).faultTolerant().skip(Exception.class).skipLimit(SKIP_LIMIT)
.listener(new MessageWriteListener())
.build();
}
stepBuilderFactory是注入进来的,然后get里面是Step的名字。
我们的Step中可以构建很多东西,比如reader,processer,writer,listener等等。
下面我们就逐个来看看step里面的这些东西是如何使用的。
Chunk
Spring batch在配置Step时采用的是基于Chunk的机制,即每次读取一条数据,再处理一条数据,累积到一定数量后再一次性交给writer进行写入操作。这样可以最大化的优化写入效率,整个事务也是基于Chunk来进行。
比如我们定义chunk size是50,那就意味着,spring batch处理了50条数据后,再统一向数据库写入。
这里有个很重要的点,chunk前面需要定义数据输入类型和输出类型,由于我们输入是Message,输出也是Message,所以两个都直接写Message了。
如果不定义这个类型,会报错。
.chunk(CHUNK_SIZE)
Reader
Reader顾名思义就是从数据源读取数据。
Spring Batch给我们提供了很多好用实用的reader,基本能满足我们所有需求。比如FlatFileItemReader,JdbcCursorItemReader,JpaPagingItemReader等。也可以自己实现Reader。
本例子里面,数据源是文本文件,所以我们就使用FlatFileItemReader。FlatFileItemReader是从文件里面一行一行的读取数据。
首先需要设置文件路径,也就是设置resource。
因为我们需要把一行文本映射为Message类,所以我们需要自己设置并实现LineMapper。
@Bean
public FlatFileItemReader jsonMessageReader() {
FlatFileItemReader reader =newFlatFileItemReader<>();
reader.setResource(newFileSystemResource(newFile(MESSAGE_FILE)));
reader.setLineMapper(newMessageLineMapper());
return reader;
}
Line Mapper
LineMapper的输入就是获取一行文本,和行号,然后转换成Message。
在本例子里面,一行文本就是一个json对象,所以我们使用JsonParser来转换成Message。
public classMessageLineMapper implements LineMapper{
private MappingJsonFactoryfactory = newMappingJsonFactory();
@Override
public Message mapLine(Stringline,intlineNumber) throws Exception {
JsonParser parser =factory.createParser(line);
Map map = (Map) parser.readValueAs(Map.class);
Message message =newMessage();
...// 转换逻辑
return message;
}
}
Processor
由于本例子里面,数据是一行文本,通过reader变成Message的类,然后writer直接把Message写入MySQL。所以我们的例子里面就不需要Processor,关于如何写Processor其实和reader/writer是一样的道理。
从它的接口可以看出,需要定义输入和输出的类型,把输入I通过某些逻辑处理之后,返回输出O。
public interface ItemProcessor {
O process(I item) throws Exception;
}
Writer
Writer顾名思义就是把数据写入到目标数据源里面。
Spring Batch同样给我们提供很多好用实用的writer。比如JpaItemWriter,FlatFileItemWriter,HibernateItemWriter,JdbcBatchItemWriter等。同样也可以自定义。
本例子里面,使用的是JpaItemWriter,可以直接把Message对象写到数据库里面。但是需要设置一个EntityManagerFactory,可以注入进来。
@Autowired
private EntityManagerFactory entityManager;
@Bean
public JpaItemWriter messageItemWriter(){
JpaItemWriter writer = new JpaItemWriter<>();
writer.setEntityManagerFactory(entityManager);
return writer;
}
另外,你需要配置数据库的连接等东西。由于我使用的spring,所以直接在Application.properties里面配置如下:
spring.datasource.url=jdbc:mysql://database
spring.datasource.username=username
spring.datasource.password=password
spring.datasource.driverClassName=com.mysql.cj.jdbc.Driver
spring.jpa.database-platform=org.hibernate.dialect.MySQLDialect
spring.jpa.show-sql=true
spring.jpa.properties.jadira.usertype.autoRegisterUserTypes=true
spring.jackson.serialization.write-dates-as-timestamps=false
spring.batch.initialize-schema=ALWAYS
spring.jpa.hibernate.ddl-auto=update
spring.datasource相关的设置都是在配置数据库的连接。
spring.batch.initialize-schema=always表示让spring batch在数据库里面创建默认的数据表。
spring.jpa.show-sql=true表示在控制台输出hibernate读写数据库时候的SQL。
spring.jpa.database-platform=org.hibernate.dialect.MySQLDialect是在指定MySQL的方言。
Listener
Spring Batch同样实现了非常完善全面的listener,listener很好理解,就是用来监听每个步骤的结果。比如可以有监听step的,有监听job的,有监听reader的,有监听writer的。没有你找不到的listener,只有你想不到的listener。
在本例子里面,我只关心,read的时候有没有出错,和write的时候有没有出错,所以,我只实现了ReadListener和WriteListener。
在read出错的时候,把错误结果写入一个单独的error列表文件中。
public class MessageItemReadListener implements ItemReadListener {
private Writer errorWriter;
public MessageItemReadListener(Writer errorWriter){
this.errorWriter = errorWriter;
}
@Override
public void beforeRead(){
}
@Override
public void afterRead(Message item){
}
@Override
public void onReadError(Exception ex){
errorWriter.write(format("%s%n", ex.getMessage()));
}
}
在write出错的时候,也做同样的事情,把出错的原因写入单独的日志中。
public class MessageWriteListener implements ItemWriteListener{
@Autowired
private Writer errorWriter;
@Override
public void beforeWrite(List items){
}
@Override
public void afterWrite(List items){
}
@Override
public void onWriteError(Exception exception, List items){
errorWriter.write(format("%s%n", exception.getMessage()));
for(Message message : items) {
errorWriter.write(format("Failed writing message id: %s", message.getObjectId()));
}
}
}
前面有说chuck机制,所以write的listener传入参数是一个List,因为它是累积到一定的数量才一起写入。
Skip
Spring Batch提供了skip的机制,也就是说,如果出错了,可以跳过。如果你不设置skip,那么一条数据出错了,整个job都会挂掉。
设置skip的时候一定要设置什么Exception才需要跳过,并且跳过多少条数据。如果失败的数据超过你设置的skip limit,那么job就会失败。
你可以分别给reader和writer等设置skip机制。
writer(messageItemWriter).faultTolerant().skip(Exception.class).skipLimit(SKIP_LIMIT)
Retry
这个和Skip是一样的原理,就是失败之后可以重试,你同样需要设置重试的次数。
同样可以分别给reader,writer等设置retry机制。
如果同时设置了retry和skip,会先重试所有次数,然后再开始skip。比如retry是10次,skip是20,会先重试10次之后,再开始算第一次skip。
运行Job
所有东西都准备好以后,就是如何运行了。
运行就是在main方法里面用JobLauncher去运行你制定的job。
下面是我写的main方法,main方法的第一个参数是job的名字,这样我们就可以通过不同的job名字跑不同的job了。
首先我们通过运行起来的Spring application得到jobRegistry,然后通过job的名字找到对应的job。
接着,我们就可以用jobLauncher去运行这个job了,运行的时候会传一些参数,比如你job里面需要的文件路径或者文件日期等,就可以通过这个jobParameters传进去。如果没有参数,可以默认传当前时间进去。
public static void main(String[] args) {
String jobName = args[0];
try {
ConfigurableApplicationContext context= SpringApplication.run(ZuociBatchApplication.class, args);
JobRegistry jobRegistry =context.getBean(JobRegistry.class);
Job job =jobRegistry.getJob(jobName);
JobLauncher jobLauncher =context.getBean(JobLauncher.class);
JobExecution jobExecution =jobLauncher.run(job, createJobParams());
if {
throw new RuntimeException(format("%s Job execution failed.",jobName));
}
} catch (Exception e) {
throw new RuntimeException(format("%s Job execution failed.",jobName));
}
}
private static JobParameters createJobParams() {
return new JobParametersBuilder().addDate("date", new Date()).toJobParameters();
}
最后,把jar包编译出来,在命令行执行下面的命令,就可以运行你的Spring Batch了。
java -jar YOUR_BATCH_NAME.jar YOUR_JOB_NAME
调试
调试主要依靠控制台输出的log,可以在application.properties里面设置log输出的级别,比如你希望输出INFO信息还是DEBUG信息。
基本上,通过查看log都能定位到问题。
logging.path=build/logs
logging.file=${logging.path}/batch.log
logging.level.root=INFO
log4j.logger.org.springframework.jdbc=INFO
log4j.logger.org.springframework.batch=INFO
logging.level.org.hibernate.SQL=INFO
Spring Batch数据表
如果你的batch最终会写入数据库,那么Spring Batch会默认在你的数据库里面创建一些batch相关的表,来记录所有job/step运行的状态和结果。
大部分表你都不需要关心,你只需要关心几张表。
batch_job_instance:这张表能看到每次运行的job名字。
batch_job_execution:这张表能看到每次运行job的开始时间,结束时间,状态,以及失败后的错误消息是什么。
batch_step_execution:这张表你能看到更多关于step的详细信息。比如step的开始时间,结束时间,提交次数,读写次数,状态,以及失败后的错误信息等。
总结
Spring Batch为我们提供了非常实用的功能,对批处理场景进行了完善的抽象,它不仅能实现小数据的迁移,也能应对大企业的大数据实践应用。它让我们开发批处理应用可以事半功倍。
最后一个tips,搭建Spring Batch的过程中,会遇到各种各样的问题。只要善用Google,都能找到答案。