首页 热点资讯 义务教育 高等教育 出国留学 考研考公
您的当前位置:首页正文

2023算式和等式有什么不同

2024-09-04 来源:华佗小知识

2023算式和等式有什么不同

算式是指在进行数或者代数式的运算时所列出的式子,等式表示相等关系的式子。2+3是算式,2+3=5 是等式也是算式。算式是有待你完成使它成为等式的代数式,等式是用等号表示两个代数式相等的式子。下面小编为大家带来算式和等式有什么不同,希望对您有所帮助!

算式和等式的区别

等式和算式不一样。算式是有待你完成使它成为等式的代数式;等式是用等号表示两个代数式相等的式子。

1、在数学中,算式是指在进行数的计算时所列出的式子,包括数和运算符号两部分。按照计算方法的不同,算式一般分为横式和竖式两种。与表达式不同,表达式是将同类型的数据,用运算符号按一定的规则连接起来的、有意义的式子。

2、含有等号的式子叫做等式。等式可分为矛盾等式和条件等式。等式两边同时加上同一个整式,或者等式两边同时乘或除以同一个不为0的整式,等式仍然成立。形式是把相等的两个数用等号连接起来。

等式的性质

1、等式两边同时被一个数或式子减,结果仍相等。如果a=b,那么c-a=c-b。

2、等式两边取相反数,结果仍相等。如果a=b,那么-a=-b。

3、等式两边不等于0时,被同一个数或式子除,结果仍相等。如果a=b≠0,那么c/a=c/b。

4、等式两边不等于0时,两边取倒数,结果仍相等。如果a=b≠0,那么1/a=1/b。

算式的格式是什么

算式的格式是指在进行数(或代数式)的计算时所列出的式子,包括数(或代替数的字母)和运算符号(四则运算、乘方、开方、阶乘、排列组合等)。

按照计算方法的不同,算式一般分为横式和竖式两种。与表达式不同,表达式是将同类型的数据(如常量、变量、函数等),用运算符号按一定的规则连接起来的、有意义地表示式子,而算式则是将数字通过运算符号联结计算出结果的式子,需要有等号。

在练习本上的格式严格按以下要求来进行:

1、算式的横式从数学本横格线的左端开始写。

2、竖式:第一个加数写在横式第二个加数下面,加号与横式中的加号对齐,加数、加数、和,三者的相同数位一定要对齐。

3、列竖式算完后,不要漏掉横式上的得数。

学数学的小方法有良好的学习兴趣,试着去培养数学得兴趣,久而久之,你就会发现数学并不是那么得难,试着多看看有关数学的动漫以及书本,都可以培养你对数学的兴趣。

课前复习,试着看一看书上的原话,没看懂的地方用记号笔画上,等上课的时候认真听课,把没听懂的地方听懂,也可以举手问老师,老师会为你讲解。

重视对概念的理解,不要去把那些能理解的话死记硬背下来,理解就行,实在不行就举例子,如:因为正数大于0,负数小于0,所以正数大于负数。一步步去把它推导出来,当然,基础还是要背的,其他理解了就行。

强大的空间想象力,学习几何图形都需要强大的空间想象力,而培养空间想象力的方法就是:1.善于画图,多画图,2.用教学器具培养你的观察想象力,3.如第一个,学,练习,画,有助于想象力的培养。4.自己多做实验,使抽象化的物体变的立体起来。

找一个学习超好,班里前3的人作为“敌人”,试着把他作为你的仇人,想想自己为什么超不过他,为什么学习没他强,试着激怒自己,并努力超过他,有时候,成功是需要敌人的帮助的。

正确面对事实,假如你在一次考试中考差了,不要灰心,多想想自己为什么会错在那个地方,做好考后一百分,这样后,把错题写在错题本上,并把方法和错题答法写在上面,有助于你的下一次考试成绩提高,用名人的一句话来说:没有失败,何有成功?以及爱迪生说的:失败乃成功之母。考差的时候多想想这些话,鼓励自己。

课内认真听讲,课后努力复习。上课要跟着老师思路来,老师讲哪里你看哪里,不懂下课就去问,上课积极举手,养成听课好习惯,下课休息时光去上个厕所就回来,趴在课桌上想想老师讲过的内容,脑内放电影,提高效率。

多做题,养成良好习惯。想要学好数学,多做题是难免的,当你攻克完一道题以后,不要急着去做下一题,试着用其他办法,看能不能做出这道题,做不出,要积极询问老师,老师会为你讲解,你只需要把方法记住,套路记住就行了。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意等,往往在大考中充分暴露,故在平时养成良好的解题习惯是非常重要的。

学数学必须遵循的规律

01

第四个原则:学习数学必须遵循从具象到形象再到抽象的规律。

数学,本是源自生活,为了解决具体的问题而生。可以说,一点也不神秘,更不会深奥。为什么我们学起来又会那么困难?

原因在于我们学习数学的方法是错误的,我们没有按照大脑工作的习惯来学习,没有遵循从具象到形象再到抽象的规律,太急功近利了,使得这么一门本来很具体的学科变得很晦涩难懂。

02

大脑分左右脑,左脑负责逻辑思维,右脑负责图像记忆。人类学东西,一般会从右脑开始,先有个大概的形象,才能进一步通过左脑去思考。可以说,右脑在很多方面的效率是优于左脑的,这是长期进化的结果。

打个比方,如果我们看见一只老虎,不是赶紧跑,而是先在脑子里思考一番,看看有没有危险,那么,我们很快就会一命呜呼了。如果用右脑来处理则简单多了,一看见老虎这个形象,身体立刻反应,起身就逃。正是这种本能且未经思考的快速反应才使得人类可以在恶劣的环境中得以自保,繁衍生息。

左脑在什么时候会更有效率?在处理更复杂的环境下,左脑更有效率。左脑可以根据以往经验的分析、判断,从而辨析每一种情况的真实性,并作出对应的反应。还拿看见老虎打比方,看见老虎就跑,这是右脑的工作,可是,如果一思考,老虎此时正被关在动物园里的玻璃房,很安全,那还用跑吗?在这里,左脑发挥作用了,进行了逻辑思考。

03

无论是左脑还是右脑,都有赖于记忆。就像电脑在正常工作之前,需要输入程序一样,人的大脑要工作,也需要输入记忆。大脑都是根据记忆来加工、处理各种情况的,为什么记忆力比较强的人,往往智商也比较高,就是这个道理。

左脑的记忆,是抽象的,右脑的记忆,是形象的。抽象记忆必须建立在形象记忆的基础之上,是对形象记忆的归纳、总结,形成结论。人类害怕老虎,是因为看见过很多老虎吃人的事情,老虎这种形象就代表了危险,右脑深深的记忆了这种危险,以后一看到老虎,跑了再说,保命要紧。后面才总结,不是什么情况看见老虎都需要跑,比如在动物园就不用,如此,就建立了抽象的思维。

右脑的记忆,效率更高,左脑的记忆,效率更低。右脑通过图像和感受记忆,直截了当,直接输入。左脑还需要通过文字和符号,经过一番处理,才能记住一个东西,相当于拐了一个弯。

04

符合道的学习,都是从具象、形象到抽象,而不是相反。

传统的数学学习方法,都是从阿拉伯数字0-10开始学起,而后再学加减乘除四则运算,后面又学代数、微积分、几何、数列、概率、统计等。可以说,都是在抽象思维上由浅入深。我们拿着这种方式学来的数学,再去解决现实的问题,却往往束手无策,这就是所谓的高分低能现象。

这种现象,在英语的学习中也经常出现。我们学英语,往往从26个英文字母开始,再记单词、拼读、语法等,最后才去使用。这样学习,往往导致哑巴英语。这也是因为一开始就搞抽象的学习,违反了学习之道。

数学本来是一种生活学科,具有天然的具象性,学起来应该会很简单才是。只是因为我们入手处错了,从抽象入手,才造成如此晦涩难懂。

05

所谓的具象,就是具体的东西;所谓的形象,就是用图形描绘具体的东西;所谓的抽象,就是用符合或者文字描写具体的东西。从思维的角度来说,抽象是最高级的思维;从效率上来说,形象是最有效的描述;从学习的角度来说,具象是最有效的学习方式。

举个简单的例子,如果我们要给别人描述一个梨。拿出一个梨,放在他面前,当然是最形象的,但是,不如画一个梨告诉他来得有效率。但是,如果要搞清楚梨是怎么回事,拿一个梨来解剖一下、品尝一下,这是最有效的学习方式。如果需要进一步的对这个梨为什么会这么甜进行一番探究,那就需要用到抽象的思维了。

学习数学,也需要从具象到形象再到抽象。我们可以从一些具体的东西入手,比如就通过梨入手,在这个基础上进行加减乘除的训练,再逐步过渡到图形上的运算,最后再用抽象的数字来运算。

这样做的好处有三个:第一,孩子会对数学产生兴趣,因为这是具象化的生活问题;第二,学习的效率更高,具象和形象的处理,都由右脑负责,右脑是出名的快,长此以往,孩子的运算能力会很强;第三,基础扎实。虽然看起来具象化的学习相比抽象化的学习刚开始会显得慢一点,但这是数学的基础,基础打牢了,抽象的学习就不会没有根。

06

西方的数学学习,大概都遵循了从具象到形象再到抽象的规律,所以,虽然他们的孩子在小学、初中阶段的抽象化数学程度比较低,但胜在基础扎实。在高中、大学,这些孩子的数学潜力逐渐的发挥出来,后来居上,往往可以赶超中国的学生。若再考虑以后,中国的学生就更不是他们的对手了。

显示全文