主题词: 极小值;直线方程;参数方程;式之
摘要:<正> 1.求函数y=2x~2-2x+1的极小值。 [解]因为 y=2x~2-2x+1=2(x~2-x+1/2)=2[=(x-1/2)~2+1/2-1/4]=2(x-1/2)~2+1/2 当(x-1/2)~2=0,即x=1/2时,上式之值最小,所以,当x=1/2时,y取极小值1/2
因篇幅问题不能全部显示,请点此查看更多更全内容