首页 热点资讯 义务教育 高等教育 出国留学 考研考公

如图,AB为⊙O的直径,CD⊥AB,垂足为D,AC=CE.?

发布网友 发布时间:22小时前

我来回答

1个回答

热心网友 时间:2分钟前

解题思路:(1)连接BC、AC,先由等弧所对的圆周角相等得出∠B=∠CAE,再根据同角的余角相等证明∠B=∠ACD,进而得到∠CAE=∠ACD,最后利用等角对等边得到结论AF=CF;
(2)连接AC、OE、OC、BC,设CO与AE交点为G,先由垂径定理的推论得出OC⊥AE,EG=AG=[1/2]AE=4,再利用AAS证明△EGO≌△CDO,得出OG=OD,在△OEG中根据勾股定理求出OG=3,则OD=3,CG=AD=2.设GF=x,则CF=AF=4-x,然后在△CGF中利用勾股定理列出方程(4-x) 2=2 2+x 2,解方程求出x的值,进而得到EF的长.
(1)证明:如图,连接BC、AC,


AC=

CE,
∴∠B=∠CAE,
∵AB是⊙O的直径,
∴∠ACB=90°,
即∠ACD+∠BCD=90°,
∵CD⊥AB,
∴∠B+∠BCD=90°,
∴∠B=∠ACD,
∴∠CAE=∠ACD,
∴AF=CF;

(2)连接AC、OE、OC、BC,设CO与AE交点为G,则OC⊥AE,EG=AG=[1/2]AE=4.


AC=

CE,
∴∠COE=∠COA,即∠GOE=∠DOC,
又∠OGE=∠ODC=90°,OE=OC,
∴△EGO≌△CDO(AAS),
∴OG=OD.
在△OEG中,∵∠OGE=90°,OE=5,EG=4,
∴OG=
OE2−EG2=3,
∴OD=OG=3,CG=AD=2.
设GF=x,则CF=AF=4-x,
在△CGF中,∵∠CGF=90°,
∴CF2=CG2+GF2,即(4-x)2=22+x2,
解得x=1.5,
∴EF=EG+GF=4+1.5=5.5.
,6,如图,AB为⊙O的直径,CD⊥AB,垂足为D, AC = CE .
(1)求证:AF=CF;
(2)若⊙O的半径为5,AE=8,求EF的长.

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com