发布网友 发布时间:2022-04-22 06:07
共1个回答
热心网友 时间:2023-04-29 09:32
1、把握概念教学的目标,处理好概念教学的发展性与阶段性之间的矛盾。
概念本身有自己严密的逻辑体系。在一定条件下,一个概念的内涵和外延是固定不变的,这是概念的确定性。由于客观事物的不断发展和变化,同时也由于人们认识的不断深化,因此,作为人们反映客观事物本质属性的概念,也是在不断发展和变化的。但是,在小学阶段的概念教学,考虑到小学生的接受能力,往往是分阶段进行的。如对“数”这个概念来说,在不同的阶段有不同的要求。开始只是认识1、2、3、……,以后逐渐认识了零,随着学生年龄的增大,又引进了分数(小数),以后又逐渐引进正、负数,有理数和无理数,把数扩充到实数、复数的范围等。又如,对“0”的认识,开始时只知道它表示没有,然后知道又可以表示该数位上一个单位也没有,还知道“0”可以表示界限等。
因此,数学概念的系统性和发展性与概念教学的阶段性成了教学中需要解决的一对矛盾。解决这一矛盾的关键是要切实把握概念教学的阶段性目标。
为了加强概念教学,教师必须认真钻研教材,掌握小学数学概念的系统,摸清概念发展的脉络。概念是逐步发展的,而且诸概念之间是互相联系的。不同的概念具体要求会有所不同,即使同一概念在不同的学习阶段要求也有差别。
有许多概念的含义是逐步发展的,一般先用描述方法给出,以后再下定义。例如,对分数意义理解的三次飞跃。第一次是在学习小数以前,就让学生初步认识了分数,“像上面讲的、、、、、等,都是分数。”通过大量感性直观的认识,结合具体事物描述什么样的是分数,初步理解分数是平均分得到的,理解谁是谁的几分之几。第二次飞跃是由具体到抽象,把单位“1”平均分成若干份,表示其中的一份或几份都可以用分数来表示。从具体事物中抽象出来。然后概括分数的定义,这只是描述性地给出了分数的概念。这是感性的飞跃。第三次飞跃是对单位“1”的理解与扩展,单位“1”不仅可以表示一个物体、一个图形、一个计量单位,还可以是一个群体等,最后抽象出,分谁,谁就是单位“1”,这样单位“1”与自然数“1”的区别就更加明确了。这样三个层次不是一蹴而就的,要展现知识的发展过程,引导学生在知识的发生发展过程中去理解分数。
再如长方体和立方体的认识在许多教材中是分成两个阶段进行教学的。在低年级,先出现长方体和立方体的初步认识,通过让学生观察一些实物及实物图,如装墨水瓶的纸盒、魔方等。积累一些有关长方体和立方体的感性认识,知道它们各是什么形状,知道这些形状的名称。然后,通过操作、观察,了解长方体和立方体各有几个面,每个面是什么形状,进一步加深对长方体和立方体的感性认识。再从实物中抽象出长方体和立方体的图形(并非透视图)。但这一阶段的教学要求只要学生知道长方体和立方体的名称,能够辨认和区分这些形状即可。仅仅停留在感性认识的层次上。第二阶段是在较高年级。教学时仍要从实例引入。教学长方体的认识时,先让学生收集长方体的物体,教师先说明什么是长方体的面、棱和顶点,让学生数一数面、棱和顶点各自的数目,量一量棱的长度,算一算各个面的大小,比较上下、左右、前后棱和面的关系和区别。然后归纳出长方体的特征。再从长方体的实例中抽象出长方体的几何图形。进而可以让学生对照实物,观察图形,弄清楚不改变观察方向,最多可以看到几个面和几条棱。哪些是看不见的,图中是怎样来表示的。还可以让学生想一想,看一看,逐步看懂长方体的几何图形,形成正确的表象。
在把握阶段性目标时,应注意以下几点:
(1)在每一个教学阶段,概念都应该是确定的,这样才不致于造成概念混乱的现象。有些概念不严格下定义,但也要依据学生的接受能力,或者用描述代替定义,或者用比较通俗易懂的语言揭示概念的本质特征。同时注意与将来的严格定义不矛盾。
(2)当一个教学阶段完成以后,应根据具体情况,酌情指出概念是发展的,不断变化的。如:有一位学生在认识了长方体之后,认为课本中的任何一张纸的形状也是长方体的。说明该学生对长方体的概念有了更进一步的理解,教师应加以肯定。
(3)当概念发展后,教师不但指出原来概念与发展后概念的联系与区别,以便学生掌握,而且还应引导学生对有关概念进行研究,注意其发展变化。如“倍”的概念,在整数范围内,通常所指的是,如果把甲量当作1份,而乙量有这样的几份,那么乙量就是甲量的几倍。在引入分数以后,“倍”的概念发展了,发展后的“倍”的概念,就包含了原来的“倍”的概念。如果把甲量当作l份,乙量也可以是甲量的几分之几。
因此,在数学概念教学中,要搞清概念之间的顺序,了解概念之间的内在联系。数学概念随着客观事物本身的发展变化和研究的深入不断地发展演变。学生对数学概念的认识,也需要随着数学学习的程度的提高,由浅入深,逐步深化。教学时既要注意教学的阶段性,不能把后面的要求提到前面,超越学生的认识能力;又要注意教学的连续性,教前面的概念要留有余地,为后继教学打下埋伏。从而处理好掌握概念的阶段性与连续性的关系。
2、加强直观教学,处理好具体与抽象的矛盾
尽管教材中大部分概念没有下严格的定义,而是从学生所了解的实际事例或已有的知识经验出发,尽可能通过直观的具体形象,帮助学生认识概念的本质属性。对于不容易理解的概念就暂不给出定义或者采用分阶段逐步渗透的办法来解决。但对于小学生来说,数学概念还是抽象的。他们形成数学概念,一般都要求有相应的感性经验为基础,而且要经历一番把感性材料在脑子里来回往复,从模糊到逐渐分明,从许多有一定联系的材料中,通过自己操作、思维活动逐步建立起事物一般的表象,分出事物的主要的本质特征或属性,这是形成概念的基础。因此,在教学中,必须加强直观,以解决数学概念的抽象性与学生思维形象性之间的矛盾。
(1)通过演示、操作进行具体与抽象的转化
教学中,对于一些相对抽象的内容,尽可能地利用恰当的演示或操作使其转化为具体内容,然后在此基础上抽象出概念的本质属性。
几何初步知识,无论是线、面、体的概念还是图形特征、性质的概念都非常抽象,因此,教学中更要加强演示、操作,通过让学生量一量、摸一摸、摆一摆、拼一拼来让学生体会这些概念,从而抽象出这些概念。
例如“圆周率”这一概念非常抽象,有的教师在课前,布置每个学生用硬纸制做一个圆,半径自定。上课时,就让每个学生在课堂作业本上写出三个内容:(1)写出自己做的圆的直径;(2)滚动自己的圆,量出圆滚动一周的长度,写在练习本上;(3)计算圆的周长是直径的几倍。全班同学做完后,要求每个同学汇报自己计算的结果,并把结果整理成下表。
圆直径(厘米)圆的周长(厘米)周长是直径的几倍
A26.23.1
B39.63.2
C412.63.15
D515.73.14
然后引导学生分析发现:不管圆的大小,它的周长总是直径的3倍多一点。这时再揭示:这个倍数是个固定的数,数学上叫做圆周率。再让学生任意画一个圆,量出直径和周长加以验证。这样,引导学生把大量的感性材料,加以分析、综合、抽象、概括,抛弃事物的非本质属性(如圆的大小、测量时用的单位等),抓住事物的本质特征(圆的周长总是直径的3倍多一点),形成了概念。
这样教师借助于直观教学,运用学生原有的一些基础知识,逐步抽象,环环紧扣,层次清楚。通过实物演示,使学生建立表象,从而解决了数学知识的抽象性与儿童思维的形象性的矛盾。
(2)结合学生的生活实际进行具体与抽象的转化
教学中有许多数量关系都是从具体生活内容中抽象出来的,因此,在教学中应该充分利用学生的生活实际,运用恰当的方式进行具体与抽象的转化,即把抽象的内容转化为学生的具体生活知识,在此基础上又将其生活知识抽象为教学内容。
例如乘法交换律的教学,往往让学生先解答这样的习题:一种钢笔,每盒10支,每支3元,买2盒钢笔要多少元?学生在实际解答中发现,这道题可以有两种解答思路,一种是先求出“每盒多少元”,再求出“2盒要多少元”,算式是(3×10)×2=60元;另一种是先求出“一共有多少支钢笔”,再求出“2盒多少元”,算式是3×(2×10)=60元。乘法分配律的教学也是让学生解答类似的问题,如:一件上衣50元,一条裤子30元,买这样的5套衣服需要多少元?这样借助于学生熟悉的生活情景,使抽象的问题变得具体化。
同样常见数量关系中的单价、总价与数量之间的关系;路程、速度与时间的关系,工作量、工作效率与工作时间之间的关系等,都应结合学生的生活经验,通过具体的题目将其抽象出来,然后又利用这些关系来分析解决问题。这样的训练有利于使学生的思维逐渐向抽象思维过渡,逐步缓解知识的抽象性与学生思维的具体形象性的矛盾。
但是,运用直观并不是目的,它只是引起学生积极思维的一种手段。因此概念教学不能只停留在感性认识上,在学生获得丰富的感性认识后,要对所观察的事物进行抽象概括,揭示概念的本质属性,使认识产生飞跃,从感性上升到理性,形成概念。
3、遵循小学生学习概念的特点,组织合理有序的教学过程
尽管小学生获取概念有概念形成和概念同化这两种基本形式,各类概念的形成又有各自的特点,但不管以何种方式获得概念,一般都会遵循从“引入一理解一巩固一深化”这样的概念形成路径。下面就概念教学中每个环节的教学策略及应注意的问题作一阐述。
(1)概念的引入要注重提供丰富而典型的感性材料
在概念引入的过程中,要注意使学生建立起清晰的表象。因为建立能突出事物共性的、清晰的典型表象是形成概念的重要基础,因此,在小学数学的概念教学中,无论以什么方式引入概念,都应考虑如何使小学生在头脑中建立起清晰的表象。概念教学一开始,应根据教学内容运用直观手段向学生提供丰富而典型的感性材料,如采用实物、模型、挂图,或进行演示,引导学生观察,并结合实验,让学生自己动手操作,以便让学生接触有关的对象,丰富自己的感性认识。
如在一节教学分数的意义的课上,一位教师为了突破单位“l”这一教学难点,事先向学生提供了各种操作材料:一根绳子,4只苹果图,6只熊猫图,一张长方形纸,l米长的线段等,通过比较、归纳出:一个物体、一个计量单位、一个整体都可以用单位“1”表示,从而突破理解单位“1”这一难点,为理解分数的意义奠定了基础。
但概念引入时所提供的材料要注意三点:一是所选材料要确切。例如角的认识,小学里讲的角是平面角,可以让学生观察黑板、书面等平面上的角。有的教师让学生观察教室相邻两堵墙所夹的角,那是两面角,对于小学教学要求来说,就不确切了。二是所选材料要突出所授知识的本质特征。例如直角三角形的本质特征是“有一个角是直角的三角形”,至于这个直角是三角形中的哪一个角,直角三角形的大小、形状,则是非本质的。因此教学时应出示不同的图形,使学生在不同的图形中辨认其不变的本质属性。
(2)概念的理解要注重正反例证的辨析,突出概念的本质属性
概念的理解是概念教学的中心环节,教师要采取一切手段帮助学生逐步理解概念的内涵和外延,以便让学生在理解的基础上掌握概念。促进对概念理解的途径有:
1)剖析概念中关键词语的真实含义
例如,分数定义中的单位“1”、“平均分”、“表示这样的一份或几份的数”,学生只有对这些关键词语的真实含义弄清楚了,才会对分数的概念有了深刻的理解。再如教学“整除”概念之后应帮助学生从以下三方面进行判断,一是判断是否具有“整除”关系的两个数都必须是自然数;二是这两个数相除所得的商是整数;三是没有余数。对定义的分析是帮助学生认识概念的又一次提高。三角形的高的定义:“从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条边叫做三角形的底。”这里的“一个顶点”、“垂线”、“垂足”都是一些关键词语。为了让学生理解三角形的高,除了让学生理解字面意思外,往往还需要学生通过实际操作,体会画“高”的全过程。指出画“高”的关键是画垂线,并注意*条件:“过三角形的一个顶点(可以是任何一个顶点),作到它对边的垂线,顶点和垂足之间的线段”。这样把实际操作的过程和所画的三角形高的图形与定义所叙述的内容对照,使学生准确地理解三角形的高的定义。这实际上是在数学概念建立后,帮助学生对本质属性进行剖析,既将本质属性再次从定义中分离出来,加以明确。
2)辨析概念的肯定例证和否定例证
学生能背诵概念并不等于真正理解概念,还要通过实例突出概念的主要特征,帮助他们加深对概念的理解。教师不仅要充分运用肯定例证来帮助学生理解概念的内涵,同时要及时运用否定例证来促进学生对概念的辨析。在概念揭示后往往要针对教学要求组织学生进行一些练习,如教完三角形按角分类后,可以出示:一个三角形不是直角三角形,并且有两个角是锐角,这个三角形一定是锐角三角形。让学生进行判断,引起学生讨论来巩固三角形的分类,以深化对三角形这一概念的外延的进一步认识。再如,小数的性质揭示后,可以让学生判断0.40、0.030、20.020、2.800、10.404、5.0000各数,哪些“0”可以去掉,哪些“0”不能去掉?从而加深学生对小数性质的理解。
3)变换本质属性的叙述或表达方式
小学生理解和掌握概念的特点之一往往是:对某一概念的内涵不很清楚,也不全面,把非本质的特征作为本质的特征。例如,有的学生误认为,只有水平放置的长方形才叫长方形,如果斜着放就辨认不出来。为此,往往需要变换概念的叙述或表达方式,让学生从各个侧面来理解概念。旨在从变式中把握概念的本质属性,排除非本质属性的干扰。因为事物的本质属性可以运用不同的语言来表达,如果学生对各种不同的叙述和表达都能理解和掌握,就说明学生对概念的理解是透彻的,是灵活的,不是死记硬背的。
4)对近似的概念及时加以对比辨析
在小学数学中,有些概念其含义接近,但本质属性又有区别。如数与数字,数位与位数,奇数与质数,偶数与合数,化简比与求比值,时间与时刻,质数、质因数与互质数,周长与面积,等等。对这类概念,学生常常容易混淆,必须及时把它们加以比较,以避免互相干扰。
如学习了“整除”,为了和以前学的“除尽”加以比较,可以设计这样的练习题:下列等式中,哪些是整除,哪些是除尽?
(1)8÷2=4(2)48÷8=6
(3)30÷7=4……2(4)8÷5=1.6
(5)6÷0.2=30(6)1.8÷3=0.6
引导学生通过分析、比较,从而得出:第(3)题是有余数的除法,当然不能说被除数被除数整除或除尽,其他各题当然能说被除数被除数除尽了。其中只有第(1)、(2)题,被除数、除数和商都是自然数,而且没有余数,这两题既可以说被除数被除数除尽,又能说被除数被除数整除。从上面的分析中,让学生明白:整除是除尽的一种特殊情况,除尽包括了整除和一切商是有限小数的情况。
学习了比之后,可以用列表法设计比与除法、分数之间的联系的习题,从中明确“除法是一种运算,分数是一个数,比是一个关系式”的区别。
3)重视概念的运用,发挥概念的作用
正确、灵活地运用概念,就是要求学生能够正确、灵活地运用概念组成判断,进行推理、计算、作图等,能运用概念分析和解决实际问题。理解概念的目的在于运用,运用的途径有:
1)自举实例
这是要求学生把已经初步获得的概念简单运用于实际,通过实例来说明概念,加深对概念的理解。有经验的教师,根据小学生对概念的认识通常带有具体性的特点,在学生通过分析、综合、抽象、概括出概念后,总是让他们自举例证,把概念具体化。从具体到抽象又回到具体,符合小学生的认识规律,使学生更准确把握概念的内涵和外延。
例如在学生初步获得了真分数、假分数的概念后,就可以让学生分别举一些真分数和假分数的实例;知道了圆柱的特征后,让学生说说日常生活中有哪些物品的形状是圆柱形的。
2)运用于计算、作图等
例如,如学了乘法的运算定律后,就可以让学生简便计算下面各题。
104×2548×25101×35×2
14×99+1425×32146+9×146
(80+8)×258×(125+50)34×5×2
在掌握分数的基本性质后,就要求学生能熟练地进行通分、约分,并说明通分、约分的依据。学习了小数的性质后,就可以让学生把小数按要求进行化简或改写;学习了等腰三角形,可设计一组操作题;画一个等腰三角形;画一个顶角60度的等腰三角形;画一个腰长为2厘米的等腰直角三角形。
3)运用于生活实践
数学概念来源于生活,就必然要回到生活实际中去。教师引导学生运用概念去解决数学问题,是培养学生思维,发展各种数学能力的过程。并且,也只有让学生把所学习到的数学概念,拿到生活实际中去运用,才会使学到的概念巩固下来,进而提高学生对数学概念的运用技能。为此,教师在教学中应当根据教材内容和学生实际,在掌握小学数学教材逻辑系统的基础上,有意识地深化和发展学生的数学概念。
例如在学习圆的面积后,一位教师就设计了这样的问题:“我们已经学习了圆面积公式,谁能想办法算一算,学校操场上白杨树树干的横截面面积?”同学们就讨论开了,有的说,算圆面积一定要先知道半径,只有把树砍下来才能量出半径;有的不赞成这样做,认为树一砍下来就会死掉。这时教师进一步引导说:“那么能不能想出不砍树就能算出横截面面积的办法来呢?大家再讨论一下。”学生们渴望得到正确的答案,通过积极思考和争论,终于找到了好办法,即先量出树干的周长,再算出半径,然后应用面积公式算出大树横截面面积。课后许多学生还到操场上实际测量了树干的周长,算出了横截面面积。再如,在教学正比例应用题时,可以启发学生运用旗杆高度与影长的关系,巧妙地算出了旗杆的高度。这样通过创设有效的教学情景,教师适时点拨,不但启迪了学生的思维,而且培养了学生学以致用的兴趣和能力,也加深了对所学概念的理解。
(4)注重概念之间的比较分类,深化概念
小学数学知识的特点是系统性强,前后联系密切,但是由于小学生思维发展水平和接受能力的*,有些知识的教学往往是分几节课或几个学期来完成,这样难免在不同程度上削弱知识间的联系。对一些有联系的概念或法则,在一定阶段应进行系统的整理,使学生在头脑中建立起知识的网络,形成良好的认知结构。尤其是中高年级,可以引导学生将概念进行分类,明确概念间的联系和区别,以形成概念系统。